Convolutional neural networks in hand-based recognition system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914417" target="_blank" >RIV/00216275:25410/19:39914417 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convolutional neural networks in hand-based recognition system
Popis výsledku v původním jazyce
Biometric systems are often discussed today. Authentication systems that work with biometric data (such as fingerprint, iris, hand geometry) have a high level of security. There are many reasons why it is necessary to have a strong authentication system. One of them is the existence of information systems that store sensitive data that needs to be protected. This article is focused on hand-based identification systems. A typical hand-based authentication system performs: data acquisition, feature extraction, classification, and decision. This paper presents the use of a convolutional neural network to identify people based on hand geometry. Convolutional neural networks are used for pattern recognition. When using a convolutional neural network, it is not necessary before classification feature extraction. Experiments were performed on a database of 550 hand images from 114 people, each person provided 5 images. The accuracy of the identification of persons was 94.11%, 3 images of each person were used for training.
Název v anglickém jazyce
Convolutional neural networks in hand-based recognition system
Popis výsledku anglicky
Biometric systems are often discussed today. Authentication systems that work with biometric data (such as fingerprint, iris, hand geometry) have a high level of security. There are many reasons why it is necessary to have a strong authentication system. One of them is the existence of information systems that store sensitive data that needs to be protected. This article is focused on hand-based identification systems. A typical hand-based authentication system performs: data acquisition, feature extraction, classification, and decision. This paper presents the use of a convolutional neural network to identify people based on hand geometry. Convolutional neural networks are used for pattern recognition. When using a convolutional neural network, it is not necessary before classification feature extraction. Experiments were performed on a database of 550 hand images from 114 people, each person provided 5 images. The accuracy of the identification of persons was 94.11%, 3 images of each person were used for training.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 34th International Business Information Management Association Conference. Vision 2025: Education Excellence and Management of Innovations through Sustainable Economic Competitive Advantage, IBIMA 2019
ISBN
978-0-9998551-3-3
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
4744-4750
Název nakladatele
International Business Information Management Association-IBIMA
Místo vydání
Norristown
Místo konání akce
Madrid
Datum konání akce
13. 11. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000556337406043