IMPLEMENTATION OF INTELLIGENT BIOMETRIC SYSTEM FOR FACE DETECTION AND CLASSIFICATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27200%2F22%3A10251683" target="_blank" >RIV/61989100:27200/22:10251683 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/22:10251683
Výsledek na webu
<a href="https://epslibrary.at/sgem_jresearch_publication_view.php?page=view&editid1=8472&" target="_blank" >https://epslibrary.at/sgem_jresearch_publication_view.php?page=view&editid1=8472&</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5593/sgem2022/2.1/s07.06" target="_blank" >10.5593/sgem2022/2.1/s07.06</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IMPLEMENTATION OF INTELLIGENT BIOMETRIC SYSTEM FOR FACE DETECTION AND CLASSIFICATION
Popis výsledku v původním jazyce
This article deals with the design and implementation of an intelligent biometric system that allows the detection and classification of a person's face from static image data and creates a system for evaluating its reliability. In its introductory part, it theoretically describes applied biometrics and biometric systems for security identification and user verification, and also deals with the theory of the description of algorithms for human face detection and recognition. Subsequently, the authors use the MATLAB programming language, which is highly optimized for modern processors and memory architectures, to focus on the implementation and testing of a biometric system using Viola-Jones algorithms and a convolutional neural network with a pre-trained network NetNet. Convolutional neural networks (CNN) are the most recognized and popular deep-learning neural networks, which are based on layers that perform two-dimensional (2D) convolution of input data with learned filters. In the final part there is a discussion where, based on the results of testing, the robustness and efficiency of the proposed intelligent biometric system is objectively evaluated. The results allow for the continued development of other pre-trained artificial neural networks, variable implementations for facial recognition, but also other things, such as the recognition of potentially dangerous people.
Název v anglickém jazyce
IMPLEMENTATION OF INTELLIGENT BIOMETRIC SYSTEM FOR FACE DETECTION AND CLASSIFICATION
Popis výsledku anglicky
This article deals with the design and implementation of an intelligent biometric system that allows the detection and classification of a person's face from static image data and creates a system for evaluating its reliability. In its introductory part, it theoretically describes applied biometrics and biometric systems for security identification and user verification, and also deals with the theory of the description of algorithms for human face detection and recognition. Subsequently, the authors use the MATLAB programming language, which is highly optimized for modern processors and memory architectures, to focus on the implementation and testing of a biometric system using Viola-Jones algorithms and a convolutional neural network with a pre-trained network NetNet. Convolutional neural networks (CNN) are the most recognized and popular deep-learning neural networks, which are based on layers that perform two-dimensional (2D) convolution of input data with learned filters. In the final part there is a discussion where, based on the results of testing, the robustness and efficiency of the proposed intelligent biometric system is objectively evaluated. The results allow for the continued development of other pre-trained artificial neural networks, variable implementations for facial recognition, but also other things, such as the recognition of potentially dangerous people.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. Volume 22, Issue 2.1
ISBN
978-619-7603-40-8
ISSN
1314-2704
e-ISSN
—
Počet stran výsledku
8
Strana od-do
43-50
Název nakladatele
STEF92 Technology Ltd.
Místo vydání
Sofia
Místo konání akce
Albena
Datum konání akce
2. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—