Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

IMPLEMENTATION OF INTELLIGENT BIOMETRIC SYSTEM FOR FACE DETECTION AND CLASSIFICATION

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27200%2F22%3A10251683" target="_blank" >RIV/61989100:27200/22:10251683 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/22:10251683

  • Výsledek na webu

    <a href="https://epslibrary.at/sgem_jresearch_publication_view.php?page=view&editid1=8472&" target="_blank" >https://epslibrary.at/sgem_jresearch_publication_view.php?page=view&editid1=8472&</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/sgem2022/2.1/s07.06" target="_blank" >10.5593/sgem2022/2.1/s07.06</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    IMPLEMENTATION OF INTELLIGENT BIOMETRIC SYSTEM FOR FACE DETECTION AND CLASSIFICATION

  • Popis výsledku v původním jazyce

    This article deals with the design and implementation of an intelligent biometric system that allows the detection and classification of a person&apos;s face from static image data and creates a system for evaluating its reliability. In its introductory part, it theoretically describes applied biometrics and biometric systems for security identification and user verification, and also deals with the theory of the description of algorithms for human face detection and recognition. Subsequently, the authors use the MATLAB programming language, which is highly optimized for modern processors and memory architectures, to focus on the implementation and testing of a biometric system using Viola-Jones algorithms and a convolutional neural network with a pre-trained network NetNet. Convolutional neural networks (CNN) are the most recognized and popular deep-learning neural networks, which are based on layers that perform two-dimensional (2D) convolution of input data with learned filters. In the final part there is a discussion where, based on the results of testing, the robustness and efficiency of the proposed intelligent biometric system is objectively evaluated. The results allow for the continued development of other pre-trained artificial neural networks, variable implementations for facial recognition, but also other things, such as the recognition of potentially dangerous people.

  • Název v anglickém jazyce

    IMPLEMENTATION OF INTELLIGENT BIOMETRIC SYSTEM FOR FACE DETECTION AND CLASSIFICATION

  • Popis výsledku anglicky

    This article deals with the design and implementation of an intelligent biometric system that allows the detection and classification of a person&apos;s face from static image data and creates a system for evaluating its reliability. In its introductory part, it theoretically describes applied biometrics and biometric systems for security identification and user verification, and also deals with the theory of the description of algorithms for human face detection and recognition. Subsequently, the authors use the MATLAB programming language, which is highly optimized for modern processors and memory architectures, to focus on the implementation and testing of a biometric system using Viola-Jones algorithms and a convolutional neural network with a pre-trained network NetNet. Convolutional neural networks (CNN) are the most recognized and popular deep-learning neural networks, which are based on layers that perform two-dimensional (2D) convolution of input data with learned filters. In the final part there is a discussion where, based on the results of testing, the robustness and efficiency of the proposed intelligent biometric system is objectively evaluated. The results allow for the continued development of other pre-trained artificial neural networks, variable implementations for facial recognition, but also other things, such as the recognition of potentially dangerous people.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. Volume 22, Issue 2.1

  • ISBN

    978-619-7603-40-8

  • ISSN

    1314-2704

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    43-50

  • Název nakladatele

    STEF92 Technology Ltd.

  • Místo vydání

    Sofia

  • Místo konání akce

    Albena

  • Datum konání akce

    2. 7. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku