Pose, Expression, Illumination Invariant 3D Face Recognition Based on Transfer Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021805" target="_blank" >RIV/62690094:18450/24:50021805 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-97-6489-1_26" target="_blank" >http://dx.doi.org/10.1007/978-981-97-6489-1_26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-6489-1_26" target="_blank" >10.1007/978-981-97-6489-1_26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pose, Expression, Illumination Invariant 3D Face Recognition Based on Transfer Learning
Popis výsledku v původním jazyce
Since the last decade, 3D face recognition is much more popular than 2D face recognition. The face recognition problem related to pose variation is easily solved by 3D face recognition. In this work, we have introduced a 3D face recognition system using a transfer learning-based approach. Deep learning is one of the most popular techniques in classification or recognition. The convolution neural network (CNN) in deep learning is mainly used for image-based recognition. However, a heavy dataset and high configuration machine are basic needs to develop a deep learning-based system. Due to the limitations of 3D databases consisting of a vast number of data, we have focused on a transfer learning-based approach on five different pre-trained network models such as ResNet50V2, InceptionV3, InceptionResNetV2, DenseNet201, and Xception. This approach transfers knowledge from a similar task to a new task for improving performance. Before feature extraction using the transfer learning approach, a binarization-based cropping technique was applied to a 3D depth image to remove outliers and extract the cropped face portion. The proposed 3D face recognition system considered two popular 3D face databases, Frav3 and Casia3D, for experimental analysis. The accuracy, recall, precision, and F1-score are calculated for all the pre-trained models for two individual databases. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Název v anglickém jazyce
Pose, Expression, Illumination Invariant 3D Face Recognition Based on Transfer Learning
Popis výsledku anglicky
Since the last decade, 3D face recognition is much more popular than 2D face recognition. The face recognition problem related to pose variation is easily solved by 3D face recognition. In this work, we have introduced a 3D face recognition system using a transfer learning-based approach. Deep learning is one of the most popular techniques in classification or recognition. The convolution neural network (CNN) in deep learning is mainly used for image-based recognition. However, a heavy dataset and high configuration machine are basic needs to develop a deep learning-based system. Due to the limitations of 3D databases consisting of a vast number of data, we have focused on a transfer learning-based approach on five different pre-trained network models such as ResNet50V2, InceptionV3, InceptionResNetV2, DenseNet201, and Xception. This approach transfers knowledge from a similar task to a new task for improving performance. Before feature extraction using the transfer learning approach, a binarization-based cropping technique was applied to a 3D depth image to remove outliers and extract the cropped face portion. The proposed 3D face recognition system considered two popular 3D face databases, Frav3 and Casia3D, for experimental analysis. The accuracy, recall, precision, and F1-score are calculated for all the pre-trained models for two individual databases. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-981-9764-88-4
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
11
Strana od-do
365-375
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Singapore
Místo konání akce
Aizawl
Datum konání akce
15. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—