Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pose, Expression, Illumination Invariant 3D Face Recognition Based on Transfer Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021805" target="_blank" >RIV/62690094:18450/24:50021805 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-97-6489-1_26" target="_blank" >http://dx.doi.org/10.1007/978-981-97-6489-1_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-6489-1_26" target="_blank" >10.1007/978-981-97-6489-1_26</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pose, Expression, Illumination Invariant 3D Face Recognition Based on Transfer Learning

  • Popis výsledku v původním jazyce

    Since the last decade, 3D face recognition is much more popular than 2D face recognition. The face recognition problem related to pose variation is easily solved by 3D face recognition. In this work, we have introduced a 3D face recognition system using a transfer learning-based approach. Deep learning is one of the most popular techniques in classification or recognition. The convolution neural network (CNN) in deep learning is mainly used for image-based recognition. However, a heavy dataset and high configuration machine are basic needs to develop a deep learning-based system. Due to the limitations of 3D databases consisting of a vast number of data, we have focused on a transfer learning-based approach on five different pre-trained network models such as ResNet50V2, InceptionV3, InceptionResNetV2, DenseNet201, and Xception. This approach transfers knowledge from a similar task to a new task for improving performance. Before feature extraction using the transfer learning approach, a binarization-based cropping technique was applied to a 3D depth image to remove outliers and extract the cropped face portion. The proposed 3D face recognition system considered two popular 3D face databases, Frav3 and Casia3D, for experimental analysis. The accuracy, recall, precision, and F1-score are calculated for all the pre-trained models for two individual databases. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

  • Název v anglickém jazyce

    Pose, Expression, Illumination Invariant 3D Face Recognition Based on Transfer Learning

  • Popis výsledku anglicky

    Since the last decade, 3D face recognition is much more popular than 2D face recognition. The face recognition problem related to pose variation is easily solved by 3D face recognition. In this work, we have introduced a 3D face recognition system using a transfer learning-based approach. Deep learning is one of the most popular techniques in classification or recognition. The convolution neural network (CNN) in deep learning is mainly used for image-based recognition. However, a heavy dataset and high configuration machine are basic needs to develop a deep learning-based system. Due to the limitations of 3D databases consisting of a vast number of data, we have focused on a transfer learning-based approach on five different pre-trained network models such as ResNet50V2, InceptionV3, InceptionResNetV2, DenseNet201, and Xception. This approach transfers knowledge from a similar task to a new task for improving performance. Before feature extraction using the transfer learning approach, a binarization-based cropping technique was applied to a 3D depth image to remove outliers and extract the cropped face portion. The proposed 3D face recognition system considered two popular 3D face databases, Frav3 and Casia3D, for experimental analysis. The accuracy, recall, precision, and F1-score are calculated for all the pre-trained models for two individual databases. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Networks and Systems

  • ISBN

    978-981-9764-88-4

  • ISSN

    2367-3370

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    365-375

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

    Singapore

  • Místo konání akce

    Aizawl

  • Datum konání akce

    15. 12. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku