Interpretable Local Frequency Binary Pattern (LFrBP) based Joint Continual Learning Network for Heterogeneous Face Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019219" target="_blank" >RIV/62690094:18450/22:50019219 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9786806" target="_blank" >https://ieeexplore.ieee.org/document/9786806</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIFS.2022.3179951" target="_blank" >10.1109/TIFS.2022.3179951</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpretable Local Frequency Binary Pattern (LFrBP) based Joint Continual Learning Network for Heterogeneous Face Recognition
Popis výsledku v původním jazyce
Heterogeneous Face Recognition (HFR) is a challenging task due to the significant intra-class variation between the query and gallery images. The reason behind this vast intra-class variation is the varying image capturing sensors and the varying image representation techniques. Visual, Infrared, thermal images are the output of different sensors and viewed sketches, and composite sketches are the output of different image representation techniques. Conventional deep learning models are trying to solve the problem. Still, progress is impeded due to small HFR data samples, task-specific models (one model trained for face sketch-photo matching can’t perform well for NIR-VIS face matching), joint learning of two different HFR scenarios are not possible by one single deep network, and models are not interpretable. In this paper, to solve these major problems, we presented a novel interpretable Local Frequency Binary Pattern (LFrBP) based continual learning shallow network for HFR. The model is divided into two parts. A modality-invariant CNN model using the LFrBP feature, fine-tuned with CNN, is presented in the first part. The second part is based on continual learning to jointly learn the two HFR scenarios (face sketch-photo and NIR-VIS face matching) using a single network. Recognition results on different challenging HFR databases depict the superiority of the proposed model over other state-of-the-art deep learning-based methods. IEEE
Název v anglickém jazyce
Interpretable Local Frequency Binary Pattern (LFrBP) based Joint Continual Learning Network for Heterogeneous Face Recognition
Popis výsledku anglicky
Heterogeneous Face Recognition (HFR) is a challenging task due to the significant intra-class variation between the query and gallery images. The reason behind this vast intra-class variation is the varying image capturing sensors and the varying image representation techniques. Visual, Infrared, thermal images are the output of different sensors and viewed sketches, and composite sketches are the output of different image representation techniques. Conventional deep learning models are trying to solve the problem. Still, progress is impeded due to small HFR data samples, task-specific models (one model trained for face sketch-photo matching can’t perform well for NIR-VIS face matching), joint learning of two different HFR scenarios are not possible by one single deep network, and models are not interpretable. In this paper, to solve these major problems, we presented a novel interpretable Local Frequency Binary Pattern (LFrBP) based continual learning shallow network for HFR. The model is divided into two parts. A modality-invariant CNN model using the LFrBP feature, fine-tuned with CNN, is presented in the first part. The second part is based on continual learning to jointly learn the two HFR scenarios (face sketch-photo and NIR-VIS face matching) using a single network. Recognition results on different challenging HFR databases depict the superiority of the proposed model over other state-of-the-art deep learning-based methods. IEEE
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Information Forensics and Security
ISSN
1556-6013
e-ISSN
1556-6021
Svazek periodika
17
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
2125-2136
Kód UT WoS článku
000812529100006
EID výsledku v databázi Scopus
2-s2.0-85131733025