Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interpretable Local Frequency Binary Pattern (LFrBP) based Joint Continual Learning Network for Heterogeneous Face Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019219" target="_blank" >RIV/62690094:18450/22:50019219 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9786806" target="_blank" >https://ieeexplore.ieee.org/document/9786806</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIFS.2022.3179951" target="_blank" >10.1109/TIFS.2022.3179951</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interpretable Local Frequency Binary Pattern (LFrBP) based Joint Continual Learning Network for Heterogeneous Face Recognition

  • Popis výsledku v původním jazyce

    Heterogeneous Face Recognition (HFR) is a challenging task due to the significant intra-class variation between the query and gallery images. The reason behind this vast intra-class variation is the varying image capturing sensors and the varying image representation techniques. Visual, Infrared, thermal images are the output of different sensors and viewed sketches, and composite sketches are the output of different image representation techniques. Conventional deep learning models are trying to solve the problem. Still, progress is impeded due to small HFR data samples, task-specific models (one model trained for face sketch-photo matching can’t perform well for NIR-VIS face matching), joint learning of two different HFR scenarios are not possible by one single deep network, and models are not interpretable. In this paper, to solve these major problems, we presented a novel interpretable Local Frequency Binary Pattern (LFrBP) based continual learning shallow network for HFR. The model is divided into two parts. A modality-invariant CNN model using the LFrBP feature, fine-tuned with CNN, is presented in the first part. The second part is based on continual learning to jointly learn the two HFR scenarios (face sketch-photo and NIR-VIS face matching) using a single network. Recognition results on different challenging HFR databases depict the superiority of the proposed model over other state-of-the-art deep learning-based methods. IEEE

  • Název v anglickém jazyce

    Interpretable Local Frequency Binary Pattern (LFrBP) based Joint Continual Learning Network for Heterogeneous Face Recognition

  • Popis výsledku anglicky

    Heterogeneous Face Recognition (HFR) is a challenging task due to the significant intra-class variation between the query and gallery images. The reason behind this vast intra-class variation is the varying image capturing sensors and the varying image representation techniques. Visual, Infrared, thermal images are the output of different sensors and viewed sketches, and composite sketches are the output of different image representation techniques. Conventional deep learning models are trying to solve the problem. Still, progress is impeded due to small HFR data samples, task-specific models (one model trained for face sketch-photo matching can’t perform well for NIR-VIS face matching), joint learning of two different HFR scenarios are not possible by one single deep network, and models are not interpretable. In this paper, to solve these major problems, we presented a novel interpretable Local Frequency Binary Pattern (LFrBP) based continual learning shallow network for HFR. The model is divided into two parts. A modality-invariant CNN model using the LFrBP feature, fine-tuned with CNN, is presented in the first part. The second part is based on continual learning to jointly learn the two HFR scenarios (face sketch-photo and NIR-VIS face matching) using a single network. Recognition results on different challenging HFR databases depict the superiority of the proposed model over other state-of-the-art deep learning-based methods. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Information Forensics and Security

  • ISSN

    1556-6013

  • e-ISSN

    1556-6021

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    2125-2136

  • Kód UT WoS článku

    000812529100006

  • EID výsledku v databázi Scopus

    2-s2.0-85131733025