Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FLEPNet: Feature Level Ensemble Parallel Network for Facial Expression Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019494" target="_blank" >RIV/62690094:18450/22:50019494 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9896934" target="_blank" >https://ieeexplore.ieee.org/document/9896934</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TAFFC.2022.3208309" target="_blank" >10.1109/TAFFC.2022.3208309</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FLEPNet: Feature Level Ensemble Parallel Network for Facial Expression Recognition

  • Popis výsledku v původním jazyce

    With the advent of deep learning, the research on facial expression recognition (FER) has received a lot of interest. Different deep convolutional neural network (DCNN) architectures have been developed for real-time and efficient FER. One of the challenges in FER is obtaining trustworthy features that are strongly associated with facial expression changes. Furthermore, traditional DCNNs for FER problems have two significant issues: insufficient training data, which leads to overfitting, and intra-class facial appearance variations. FLEPNet, a texture-based feature-level ensemble parallel network for FER, is proposed in this study and proved to solve the aforementioned problems. Our parallel network FLEPNet uses multi-scale convolutional and multi-scale residual block-based DCNN as building blocks. First, we consider modified homomorphic filtering to normalize the illumination effectively, which minimizes the intra-class difference. The deep networks are then protected against having insufficient training data by using texture analysis on face expression images to identify multiple attributes. Four texture features are extracted and combined with the image&apos;s original characteristics. Finally, the integrated features retrieved by two networks are used to classify seven facial expressions. Experimental results reveal that the proposed technique achieves an average accuracy of 0.9914, 0.9894, 0.9796, 0.8756, and 0.8072 on Japanese Female Facial Expressions, Extended CohnKanade, Karolinska Directed Emotional Faces, Real-world Affective Face Database, and Facial Expression Recognition 2013 databases, respectively. Moreover, experimental outcomes depict significant reliability when compared to competing approaches. IEEE

  • Název v anglickém jazyce

    FLEPNet: Feature Level Ensemble Parallel Network for Facial Expression Recognition

  • Popis výsledku anglicky

    With the advent of deep learning, the research on facial expression recognition (FER) has received a lot of interest. Different deep convolutional neural network (DCNN) architectures have been developed for real-time and efficient FER. One of the challenges in FER is obtaining trustworthy features that are strongly associated with facial expression changes. Furthermore, traditional DCNNs for FER problems have two significant issues: insufficient training data, which leads to overfitting, and intra-class facial appearance variations. FLEPNet, a texture-based feature-level ensemble parallel network for FER, is proposed in this study and proved to solve the aforementioned problems. Our parallel network FLEPNet uses multi-scale convolutional and multi-scale residual block-based DCNN as building blocks. First, we consider modified homomorphic filtering to normalize the illumination effectively, which minimizes the intra-class difference. The deep networks are then protected against having insufficient training data by using texture analysis on face expression images to identify multiple attributes. Four texture features are extracted and combined with the image&apos;s original characteristics. Finally, the integrated features retrieved by two networks are used to classify seven facial expressions. Experimental results reveal that the proposed technique achieves an average accuracy of 0.9914, 0.9894, 0.9796, 0.8756, and 0.8072 on Japanese Female Facial Expressions, Extended CohnKanade, Karolinska Directed Emotional Faces, Real-world Affective Face Database, and Facial Expression Recognition 2013 databases, respectively. Moreover, experimental outcomes depict significant reliability when compared to competing approaches. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Affective Computing

  • ISSN

    1949-3045

  • e-ISSN

    1949-3045

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    2058-2070

  • Kód UT WoS článku

    000892948500028

  • EID výsledku v databázi Scopus

    2-s2.0-85139441989