Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Facial Expression Recognition in-the-wild using Blended Feature Attention Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020670" target="_blank" >RIV/62690094:18450/23:50020670 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10250983/" target="_blank" >https://ieeexplore.ieee.org/document/10250983/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2023.3314815" target="_blank" >10.1109/TIM.2023.3314815</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Facial Expression Recognition in-the-wild using Blended Feature Attention Network

  • Popis výsledku v původním jazyce

    Facial expression analysis plays a crucial role in various fields, such as affective computing, marketing, and clinical evaluation. Despite numerous advances, research on facial expression recognition (FER) has recently been proceeding from confined lab circumstances to &lt;italic&gt;in-the-wild&lt;/italic&gt; environments. FER is still an arduous and demanding problem due to occlusion and pose changes, intra-class and intensity variations caused by illumination, and insufficient training data. Most state-of-the-art approaches use entire face for FER. However, the past studies on psychology and physiology reveals that mouth and eyes reflect the variations of various facial expressions, which are closely related to the manifestation of emotion. A novel method is proposed in this study to address some of the issues mentioned above. Firstly, modified homomorphic filtering is employed to normalize the illumination, then the normalized face image is cropped into five local regions to emphasize expression-specific characteristics. Finally, a unique blended feature attention network (BFAN) is designed for FER. BFAN consists of both residual dilated multi-scale feature extraction module and spatial and channel-wise attention modules. These modules help to extract the most relevant and discriminative features from the high-level and low-level features. Then, both feature maps are integrated and passed on to the dense layers followed by a softmax layer to compute probability scores. Finally, the Choquet fuzzy integral is applied to the computed probability scores to get the final outcome. The superiority of the proposed method is exemplified by comparing it with eighteen existing approaches on seven benchmark datasets. IEEE

  • Název v anglickém jazyce

    Facial Expression Recognition in-the-wild using Blended Feature Attention Network

  • Popis výsledku anglicky

    Facial expression analysis plays a crucial role in various fields, such as affective computing, marketing, and clinical evaluation. Despite numerous advances, research on facial expression recognition (FER) has recently been proceeding from confined lab circumstances to &lt;italic&gt;in-the-wild&lt;/italic&gt; environments. FER is still an arduous and demanding problem due to occlusion and pose changes, intra-class and intensity variations caused by illumination, and insufficient training data. Most state-of-the-art approaches use entire face for FER. However, the past studies on psychology and physiology reveals that mouth and eyes reflect the variations of various facial expressions, which are closely related to the manifestation of emotion. A novel method is proposed in this study to address some of the issues mentioned above. Firstly, modified homomorphic filtering is employed to normalize the illumination, then the normalized face image is cropped into five local regions to emphasize expression-specific characteristics. Finally, a unique blended feature attention network (BFAN) is designed for FER. BFAN consists of both residual dilated multi-scale feature extraction module and spatial and channel-wise attention modules. These modules help to extract the most relevant and discriminative features from the high-level and low-level features. Then, both feature maps are integrated and passed on to the dense layers followed by a softmax layer to compute probability scores. Finally, the Choquet fuzzy integral is applied to the computed probability scores to get the final outcome. The superiority of the proposed method is exemplified by comparing it with eighteen existing approaches on seven benchmark datasets. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Instrumentation and Measurement

  • ISSN

    0018-9456

  • e-ISSN

    1557-9662

  • Svazek periodika

    72

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    "Article number: 5026416"

  • Kód UT WoS článku

    001083291000016

  • EID výsledku v databázi Scopus

    2-s2.0-85171576697