Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FER-net: facial expression recognition using deep neural net

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017705" target="_blank" >RIV/62690094:18450/21:50017705 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00521-020-05676-y" target="_blank" >https://link.springer.com/article/10.1007/s00521-020-05676-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-020-05676-y" target="_blank" >10.1007/s00521-020-05676-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FER-net: facial expression recognition using deep neural net

  • Popis výsledku v původním jazyce

    Automatic facial expression recognition (FER) is one of the most challenging tasks in computer vision. FER admits a wide range of applications in human–computer interaction, behavioral psychology, and human expression synthesis. Extensive works have been reported in this field, mainly, based on handcrafted features. However, it is a challenging task to accurately extract all the correlated handcrafted features due to the effect of variations caused by emotional state. Therefore, there is a quest for further research on accurately extracting relevant features that can capture changes in facial expressions (FEs) with high fidelity. In this study, we propose FER-net: a convolution neural network to distinguish FEs efficiently with the help of the softmax classifier. We implement our method FER-net along with twenty-one state-of-the-art methods and test them on five benchmarking datasets, namely FER2013, Japanese Female Facial Expressions, Extended CohnKanade, Karolinska Directed Emotional Faces, and Real-world Affective Faces. Seven FEs, namely neutral, anger, disgust, fear, happiness, sadness, and surprise, are considered in this work. The average accuracies on these datasets are 78.9%, 96.7%, 97.8%, 82.5% and 81.68%, respectively. The obtained results demonstrate that FER-net is preeminent in comparison with twenty-one state-of-the-art methods. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature.

  • Název v anglickém jazyce

    FER-net: facial expression recognition using deep neural net

  • Popis výsledku anglicky

    Automatic facial expression recognition (FER) is one of the most challenging tasks in computer vision. FER admits a wide range of applications in human–computer interaction, behavioral psychology, and human expression synthesis. Extensive works have been reported in this field, mainly, based on handcrafted features. However, it is a challenging task to accurately extract all the correlated handcrafted features due to the effect of variations caused by emotional state. Therefore, there is a quest for further research on accurately extracting relevant features that can capture changes in facial expressions (FEs) with high fidelity. In this study, we propose FER-net: a convolution neural network to distinguish FEs efficiently with the help of the softmax classifier. We implement our method FER-net along with twenty-one state-of-the-art methods and test them on five benchmarking datasets, namely FER2013, Japanese Female Facial Expressions, Extended CohnKanade, Karolinska Directed Emotional Faces, and Real-world Affective Faces. Seven FEs, namely neutral, anger, disgust, fear, happiness, sadness, and surprise, are considered in this work. The average accuracies on these datasets are 78.9%, 96.7%, 97.8%, 82.5% and 81.68%, respectively. The obtained results demonstrate that FER-net is preeminent in comparison with twenty-one state-of-the-art methods. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    9125-9136

  • Kód UT WoS článku

    000606448600003

  • EID výsledku v databázi Scopus

    2-s2.0-85099288576