Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Understanding Deep Learning Techniques for Recognition of Human Emotions Using Facial Expressions: A Comprehensive Survey

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020245" target="_blank" >RIV/62690094:18450/23:50020245 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10041168" target="_blank" >https://ieeexplore.ieee.org/document/10041168</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2023.3243661" target="_blank" >10.1109/TIM.2023.3243661</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Understanding Deep Learning Techniques for Recognition of Human Emotions Using Facial Expressions: A Comprehensive Survey

  • Popis výsledku v původním jazyce

    Emotion recognition plays a significant role in cognitive psychology research. However, measuring emotions is a challenging task. Thus, several approaches have been designed for facial expression recognition (FER). Although, the challenges increase further as the data transit from the laboratory-controlled environment to in-the-wild circumstances, nowadays, applications are overwhelmed by a profusion of deep learning (DL) techniques in real-world problems. DL networks have steadily led to a better understanding of low-dimensional discriminative features from high-dimensional complex face patterns for automatic FER. The modern FER systems based on deep neural networks mainly suffer from two problems: overfitting due to the inadequate availability of training data and complications unassociated with the expressions, such as occlusion, posture, illumination, and identity bias. This study aims to provide a comprehensive survey of the significant DL-based methods that have made a notable contribution to the field of FER. Different components of the methods, such as preprocessing, feature extraction, and classification of facial expressions, are described systematically. Moreover, the discussed approaches are analyzed to compare their performance along with their advantages and limitations. Furthermore, different databases relevant to FER are also explored in this study. Essentially, the main aim of this survey is twofold. The former is to discuss the current scenario of FER approaches and the latter is to present some thoughts on the future directions of facial emotion recognition by machines: what are the obstacles and prospects for FER researchers? © 1963-2012 IEEE.

  • Název v anglickém jazyce

    Understanding Deep Learning Techniques for Recognition of Human Emotions Using Facial Expressions: A Comprehensive Survey

  • Popis výsledku anglicky

    Emotion recognition plays a significant role in cognitive psychology research. However, measuring emotions is a challenging task. Thus, several approaches have been designed for facial expression recognition (FER). Although, the challenges increase further as the data transit from the laboratory-controlled environment to in-the-wild circumstances, nowadays, applications are overwhelmed by a profusion of deep learning (DL) techniques in real-world problems. DL networks have steadily led to a better understanding of low-dimensional discriminative features from high-dimensional complex face patterns for automatic FER. The modern FER systems based on deep neural networks mainly suffer from two problems: overfitting due to the inadequate availability of training data and complications unassociated with the expressions, such as occlusion, posture, illumination, and identity bias. This study aims to provide a comprehensive survey of the significant DL-based methods that have made a notable contribution to the field of FER. Different components of the methods, such as preprocessing, feature extraction, and classification of facial expressions, are described systematically. Moreover, the discussed approaches are analyzed to compare their performance along with their advantages and limitations. Furthermore, different databases relevant to FER are also explored in this study. Essentially, the main aim of this survey is twofold. The former is to discuss the current scenario of FER approaches and the latter is to present some thoughts on the future directions of facial emotion recognition by machines: what are the obstacles and prospects for FER researchers? © 1963-2012 IEEE.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Instrumentation and Measurement

  • ISSN

    0018-9456

  • e-ISSN

    1557-9662

  • Svazek periodika

    72

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    31

  • Strana od-do

    "Article number: 5006631"

  • Kód UT WoS článku

    000945294200004

  • EID výsledku v databázi Scopus

    2-s2.0-85149267560