Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tax default prediction using feature transformation-based machine learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917739" target="_blank" >RIV/00216275:25410/21:39917739 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9310180" target="_blank" >https://ieeexplore.ieee.org/document/9310180</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2020.3048018" target="_blank" >10.1109/ACCESS.2020.3048018</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tax default prediction using feature transformation-based machine learning

  • Popis výsledku v původním jazyce

    This study proposes to address the economic significance of unpaid taxes by using an automatic system for predicting a tax default. Too little attention has been paid to tax default prediction in the past. Moreover, existing approaches tend to apply conventional statistical methods rather than advanced data analytic approaches, including state-of-the-art machine learning methods. Therefore, existing studies cannot effectively detect tax default information in real-world financial data because they fail to take into account the appropriate data transformations and nonlinear relationships between early-warning financial indicators and tax default behavior. To overcome these problems, this study applies diverse feature transformation techniques and state-of-the-art machine learning approaches. The proposed prediction system is validated by using a dataset showing tax defaults and non-defaults at Finnish limited liability firms. Our findings provide evidence for a major role of feature transformation, such as logarithmic and square-root transformation, in improving the performance of tax default prediction. We also show that extreme gradient boosting and the systematically developed forest of multiple decision trees outperform other machine learning methods in terms of accuracy and other classification performance measures. We show that the equity ratio, liquidity ratio, and debt-to-sales ratio are the most important indicators of tax defaults for 1-year-ahead predictions. Therefore, this study highlights the essential role of well-designed tax default prediction systems, which require a combination of feature transformation and machine learning methods. The effective implementation of an automatic tax default prediction system has important implications for tax administration and can assist administrators in achieving feasible government expenditure allocations and revenue expansions.

  • Název v anglickém jazyce

    Tax default prediction using feature transformation-based machine learning

  • Popis výsledku anglicky

    This study proposes to address the economic significance of unpaid taxes by using an automatic system for predicting a tax default. Too little attention has been paid to tax default prediction in the past. Moreover, existing approaches tend to apply conventional statistical methods rather than advanced data analytic approaches, including state-of-the-art machine learning methods. Therefore, existing studies cannot effectively detect tax default information in real-world financial data because they fail to take into account the appropriate data transformations and nonlinear relationships between early-warning financial indicators and tax default behavior. To overcome these problems, this study applies diverse feature transformation techniques and state-of-the-art machine learning approaches. The proposed prediction system is validated by using a dataset showing tax defaults and non-defaults at Finnish limited liability firms. Our findings provide evidence for a major role of feature transformation, such as logarithmic and square-root transformation, in improving the performance of tax default prediction. We also show that extreme gradient boosting and the systematically developed forest of multiple decision trees outperform other machine learning methods in terms of accuracy and other classification performance measures. We show that the equity ratio, liquidity ratio, and debt-to-sales ratio are the most important indicators of tax defaults for 1-year-ahead predictions. Therefore, this study highlights the essential role of well-designed tax default prediction systems, which require a combination of feature transformation and machine learning methods. The effective implementation of an automatic tax default prediction system has important implications for tax administration and can assist administrators in achieving feasible government expenditure allocations and revenue expansions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE ACCESS

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    29.12.2020

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    19864-19881

  • Kód UT WoS článku

    000615028400001

  • EID výsledku v databázi Scopus

    2-s2.0-85099111620