Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

OCFSP: self-supervised one-class classification approach using feature-slide prediction subtask for feature data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50020122" target="_blank" >RIV/62690094:18470/22:50020122 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00500-022-07414-z" target="_blank" >https://link.springer.com/article/10.1007/s00500-022-07414-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00500-022-07414-z" target="_blank" >10.1007/s00500-022-07414-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    OCFSP: self-supervised one-class classification approach using feature-slide prediction subtask for feature data

  • Popis výsledku v původním jazyce

    One-class classification (OCC) is a machine learning problem where training data has only one class. Recently, self-supervised OCC algorithms have been increasing attention. These algorithms train the model for pretext tasks and use the model error for OCC. However, these tasks are specialized for images, and applying them to feature data is not practical or appropriate for such a purpose. The motivation of this study is to apply self-supervised OCC to feature data. For this purpose, this paper proposes an OCC approach using feature-slide prediction (FSP) subtask for feature data (OCFSP). The main originality is the FSP subtask, which is the first classification subtask for feature data. In particular, the proposed method creates a self-labeled dataset by generating additional feature vectors with the feature slide of original vectors and self-annotating these vectors as the number of the slides. Such a dataset is applied to train a multi-class classifier to predict the number of feature slides. Since this classification model learns data from only one class, the FSP accuracy for a seen class is higher relative to unseen classes. Accordingly, OCC could be made using the accuracy of FSP. The proposed methods are experimented with using the imbalanced-learn, covtype, and kddcup datasets. OCFSP shows fair accuracy where few training data is given. In addition, classification subtask for feature data shows a relatively fast testing speed, unlike image data. Therefore, the bottleneck of the self-supervised approach is considered the memory size, which is the main difference between image and feature data. Source code is uploaded at https://github.com/ToshiHayashi/OCFSP

  • Název v anglickém jazyce

    OCFSP: self-supervised one-class classification approach using feature-slide prediction subtask for feature data

  • Popis výsledku anglicky

    One-class classification (OCC) is a machine learning problem where training data has only one class. Recently, self-supervised OCC algorithms have been increasing attention. These algorithms train the model for pretext tasks and use the model error for OCC. However, these tasks are specialized for images, and applying them to feature data is not practical or appropriate for such a purpose. The motivation of this study is to apply self-supervised OCC to feature data. For this purpose, this paper proposes an OCC approach using feature-slide prediction (FSP) subtask for feature data (OCFSP). The main originality is the FSP subtask, which is the first classification subtask for feature data. In particular, the proposed method creates a self-labeled dataset by generating additional feature vectors with the feature slide of original vectors and self-annotating these vectors as the number of the slides. Such a dataset is applied to train a multi-class classifier to predict the number of feature slides. Since this classification model learns data from only one class, the FSP accuracy for a seen class is higher relative to unseen classes. Accordingly, OCC could be made using the accuracy of FSP. The proposed methods are experimented with using the imbalanced-learn, covtype, and kddcup datasets. OCFSP shows fair accuracy where few training data is given. In addition, classification subtask for feature data shows a relatively fast testing speed, unlike image data. Therefore, the bottleneck of the self-supervised approach is considered the memory size, which is the main difference between image and feature data. Source code is uploaded at https://github.com/ToshiHayashi/OCFSP

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Soft Computing

  • ISSN

    1432-7643

  • e-ISSN

    1433-7479

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    10127-10149

  • Kód UT WoS článku

    000838499600003

  • EID výsledku v databázi Scopus

    2-s2.0-85136922796