SIFT and SURF based feature extraction for the anomaly detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144417" target="_blank" >RIV/00216305:26220/22:PU144417 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SIFT and SURF based feature extraction for the anomaly detection
Popis výsledku v původním jazyce
In this paper, we suggest a way to use SIFT and SURF algorithms to extract the image features for anomaly detection. We use those feature vectors to train various classifiers on a real-world dataset in the semi-supervised (with a small number of faulty samples) manner with a large number of classifiers and in the one-class (with no faulty samples) manner using the SVDD and SVM classifier. We prove, that the SIFT and SURF algorithms could be used as feature extractors, that they could be used to train a semi-supervised and one-class classifier with an accuracy around 89% and that the performance of the one-class classifier could be comparable to the semi-supervised one. We also made our dataset and source code publicly available.
Název v anglickém jazyce
SIFT and SURF based feature extraction for the anomaly detection
Popis výsledku anglicky
In this paper, we suggest a way to use SIFT and SURF algorithms to extract the image features for anomaly detection. We use those feature vectors to train various classifiers on a real-world dataset in the semi-supervised (with a small number of faulty samples) manner with a large number of classifiers and in the one-class (with no faulty samples) manner using the SVDD and SVM classifier. We prove, that the SIFT and SURF algorithms could be used as feature extractors, that they could be used to train a semi-supervised and one-class classifier with an accuracy around 89% and that the performance of the one-class classifier could be comparable to the semi-supervised one. We also made our dataset and source code publicly available.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů