Patient deterioration detection using one-class classification via cluster period estimation subtask
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021114" target="_blank" >RIV/62690094:18470/24:50021114 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025523015608" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025523015608</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2023.119975" target="_blank" >10.1016/j.ins.2023.119975</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Patient deterioration detection using one-class classification via cluster period estimation subtask
Popis výsledku v původním jazyce
Deterioration is the significant degradation of the physical state prior to death. Detecting the deterioration of patients could provide an early warning to their families in instances of homecare, to clinicians treating hospitalized patients and to nurses by clients of retirement homes. Traditional supervised machine learning is not helpful for this purpose because the deterioration has individual differences for each patient, and the model cannot access the information about deterioration from healthy patients. This paper applies one-class classification (OCC) to detect deterioration changes. OCC can provide an early warning because the model can learn from only normal conditions. In particular, a one-class time-series classification (OCTSC) algorithm has been developed by combining K-means clustering with sliding windows and a linear regression subtask. The core idea is to detect the change in the signal period related to heart/breathing rate. For this purpose, clustering is applied to sliding windows, and the period is estimated using linear regression for the time index of arbitrary cluster. The deterioration change is detected by unseen scores computed as the error of linear regression subtask for cluster index.
Název v anglickém jazyce
Patient deterioration detection using one-class classification via cluster period estimation subtask
Popis výsledku anglicky
Deterioration is the significant degradation of the physical state prior to death. Detecting the deterioration of patients could provide an early warning to their families in instances of homecare, to clinicians treating hospitalized patients and to nurses by clients of retirement homes. Traditional supervised machine learning is not helpful for this purpose because the deterioration has individual differences for each patient, and the model cannot access the information about deterioration from healthy patients. This paper applies one-class classification (OCC) to detect deterioration changes. OCC can provide an early warning because the model can learn from only normal conditions. In particular, a one-class time-series classification (OCTSC) algorithm has been developed by combining K-means clustering with sliding windows and a linear regression subtask. The core idea is to detect the change in the signal period related to heart/breathing rate. For this purpose, clustering is applied to sliding windows, and the period is estimated using linear regression for the time index of arbitrary cluster. The deterioration change is detected by unseen scores computed as the error of linear regression subtask for cluster index.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
657
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
"Article Number: 119975"
Kód UT WoS článku
001138331600001
EID výsledku v databázi Scopus
2-s2.0-85180414570