OCSTN: One-class time-series classification approach using a signal transformation network into a goal signal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019525" target="_blank" >RIV/62690094:18470/22:50019525 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0020025522010714" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0020025522010714</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2022.09.027" target="_blank" >10.1016/j.ins.2022.09.027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
OCSTN: One-class time-series classification approach using a signal transformation network into a goal signal
Popis výsledku v původním jazyce
One-class classification (OCC) is a classification task where the training data have only one class. The goal is to classify input data into one seen class or other unseen classes. This paper proposes an OCC approach using a signal transformation network (OCSTN), which aims to process univariate time-series data. The main contribution is developing a signal transformation network (STN) that aims to transform input signals into one signal, namely the goal signal. Moreover, the model error of the STN is a distance metric between the goal signal and the model output. The STN model learns from one-class signals. Therefore, model error for one class is small relative to other classes. Accordingly, OCSTN could discriminate between seen and unseen classes using the model errors. The proposed OCSTN is evaluated using two ballistocardiography (BCG) datasets. The OCSTN achieves fair results in both AUC scores and processing speed. OCSTN has a weak point in training diverse signals. In addition, the entropy and smoothness of the goal signal are highly related to the AUC score.
Název v anglickém jazyce
OCSTN: One-class time-series classification approach using a signal transformation network into a goal signal
Popis výsledku anglicky
One-class classification (OCC) is a classification task where the training data have only one class. The goal is to classify input data into one seen class or other unseen classes. This paper proposes an OCC approach using a signal transformation network (OCSTN), which aims to process univariate time-series data. The main contribution is developing a signal transformation network (STN) that aims to transform input signals into one signal, namely the goal signal. Moreover, the model error of the STN is a distance metric between the goal signal and the model output. The STN model learns from one-class signals. Therefore, model error for one class is small relative to other classes. Accordingly, OCSTN could discriminate between seen and unseen classes using the model errors. The proposed OCSTN is evaluated using two ballistocardiography (BCG) datasets. The OCSTN achieves fair results in both AUC scores and processing speed. OCSTN has a weak point in training diverse signals. In addition, the entropy and smoothness of the goal signal are highly related to the AUC score.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
614
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
71-86
Kód UT WoS článku
000911596800002
EID výsledku v databázi Scopus
2-s2.0-85139590778