Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

OCSTN: One-class time-series classification approach using a signal transformation network into a goal signal

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019525" target="_blank" >RIV/62690094:18470/22:50019525 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0020025522010714" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0020025522010714</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2022.09.027" target="_blank" >10.1016/j.ins.2022.09.027</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    OCSTN: One-class time-series classification approach using a signal transformation network into a goal signal

  • Popis výsledku v původním jazyce

    One-class classification (OCC) is a classification task where the training data have only one class. The goal is to classify input data into one seen class or other unseen classes. This paper proposes an OCC approach using a signal transformation network (OCSTN), which aims to process univariate time-series data. The main contribution is developing a signal transformation network (STN) that aims to transform input signals into one signal, namely the goal signal. Moreover, the model error of the STN is a distance metric between the goal signal and the model output. The STN model learns from one-class signals. Therefore, model error for one class is small relative to other classes. Accordingly, OCSTN could discriminate between seen and unseen classes using the model errors. The proposed OCSTN is evaluated using two ballistocardiography (BCG) datasets. The OCSTN achieves fair results in both AUC scores and processing speed. OCSTN has a weak point in training diverse signals. In addition, the entropy and smoothness of the goal signal are highly related to the AUC score.

  • Název v anglickém jazyce

    OCSTN: One-class time-series classification approach using a signal transformation network into a goal signal

  • Popis výsledku anglicky

    One-class classification (OCC) is a classification task where the training data have only one class. The goal is to classify input data into one seen class or other unseen classes. This paper proposes an OCC approach using a signal transformation network (OCSTN), which aims to process univariate time-series data. The main contribution is developing a signal transformation network (STN) that aims to transform input signals into one signal, namely the goal signal. Moreover, the model error of the STN is a distance metric between the goal signal and the model output. The STN model learns from one-class signals. Therefore, model error for one class is small relative to other classes. Accordingly, OCSTN could discriminate between seen and unseen classes using the model errors. The proposed OCSTN is evaluated using two ballistocardiography (BCG) datasets. The OCSTN achieves fair results in both AUC scores and processing speed. OCSTN has a weak point in training diverse signals. In addition, the entropy and smoothness of the goal signal are highly related to the AUC score.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information sciences

  • ISSN

    0020-0255

  • e-ISSN

    1872-6291

  • Svazek periodika

    614

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    71-86

  • Kód UT WoS článku

    000911596800002

  • EID výsledku v databázi Scopus

    2-s2.0-85139590778