Image Classifier with Dynamic Set of Known Classes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302GEE" target="_blank" >RIV/61988987:17610/22:A2302GEE - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3226/paper8.pdf" target="_blank" >https://ceur-ws.org/Vol-3226/paper8.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image Classifier with Dynamic Set of Known Classes
Popis výsledku v původním jazyce
The typical classification task is based on the assumption that the model will later only encounter examples of classes available during its training. In practice, this is often not a realistic assumption, because of limitations in obtaining enough labeled training data. This contribution is focused on the case where the model might encounter a sample belonging to a class different from the classes seen in the training phase. The goal is to reject examples of unseen classes with the option of later adding them as representatives of new classes without the need to retrain the backbone model. This is important because the end-user might not be able to re-train the model for any reason. The presented approach is based on metric learning combined with the meta-classifier similar to the approach of Xu et al. [1]. Classified examples are first embedded in a vector space through an encoder trained to capture similarities in the input data. The classification itself is then performed by ????, where ???? is the number of known classes, binary decisions. For each decision, the tested example is compared to the ???? closest examples from the given class. If the model does not decide that the example belongs to any class, this example is rejected as possibly unknown. The method is tested in a visual data classification task.
Název v anglickém jazyce
Image Classifier with Dynamic Set of Known Classes
Popis výsledku anglicky
The typical classification task is based on the assumption that the model will later only encounter examples of classes available during its training. In practice, this is often not a realistic assumption, because of limitations in obtaining enough labeled training data. This contribution is focused on the case where the model might encounter a sample belonging to a class different from the classes seen in the training phase. The goal is to reject examples of unseen classes with the option of later adding them as representatives of new classes without the need to retrain the backbone model. This is important because the end-user might not be able to re-train the model for any reason. The presented approach is based on metric learning combined with the meta-classifier similar to the approach of Xu et al. [1]. Classified examples are first embedded in a vector space through an encoder trained to capture similarities in the input data. The classification itself is then performed by ????, where ???? is the number of known classes, binary decisions. For each decision, the tested example is compared to the ???? closest examples from the given class. If the model does not decide that the example belongs to any class, this example is rejected as possibly unknown. The method is tested in a visual data classification task.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 22nd Conference Information Technologies - Applications and Theory (ITAT 2022)
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
7
Strana od-do
68-74
Název nakladatele
CEUR-WS
Místo vydání
—
Místo konání akce
Zuberec, Slovakia
Datum konání akce
23. 9. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—