Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Klasifikace dopravních značek založená na míře podobnosti zkoumaného objektu k třídě reprezentované typickou značkou

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F06%3A00041079" target="_blank" >RIV/67985556:_____/06:00041079 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61384399:31160/06:00025099

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Building Road-Sign Classifiers Using a Trainable Similarity Measure

  • Popis výsledku v původním jazyce

    A frequently used strategy for road sign classification is based on the normalized cross-correlation similarity to class prototypes followed by the nearest neighbor classifier. Because of the global nature of the cross-correlation similarity, this methodsuffers from presence of uninformative pixels (caused e.g. by occlusions), and is computationally demanding. In this paper, a novel concept of a trainable similarity measure is introduced which alleviates these shortcomings. The similarity is based on individual matches in a set of local image regions. The set of regions, relevant for a particular similarity assessment, is refined by the training process. It is illustrated on a set of experiments with road sign classification problems that the trainable similarity yields high-performance data representations and classifiers. Apart from a multi-class classification accuracy, also non-sign rejection capability, and computational demands in execution are discussed. It appears that the tra

  • Název v anglickém jazyce

    Building Road-Sign Classifiers Using a Trainable Similarity Measure

  • Popis výsledku anglicky

    A frequently used strategy for road sign classification is based on the normalized cross-correlation similarity to class prototypes followed by the nearest neighbor classifier. Because of the global nature of the cross-correlation similarity, this methodsuffers from presence of uninformative pixels (caused e.g. by occlusions), and is computationally demanding. In this paper, a novel concept of a trainable similarity measure is introduced which alleviates these shortcomings. The similarity is based on individual matches in a set of local image regions. The set of regions, relevant for a particular similarity assessment, is refined by the training process. It is illustrated on a set of experiments with road sign classification problems that the trainable similarity yields high-performance data representations and classifiers. Apart from a multi-class classification accuracy, also non-sign rejection capability, and computational demands in execution are discussed. It appears that the tra

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Intelligent Transportation Systems

  • ISSN

    1524-9050

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    309-321

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus