Distance-based one-class time-series classification approach using local cluster balance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50020644" target="_blank" >RIV/62690094:18470/24:50020644 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417423017037" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417423017037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2023.121201" target="_blank" >10.1016/j.eswa.2023.121201</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distance-based one-class time-series classification approach using local cluster balance
Popis výsledku v původním jazyce
Deciding the signal length is an important challenge for one-class time-series classification (OCTSC). This paper aims to develop an OCTSC algorithm that does not require model retraining for different signal lengths. For this purpose, a distance-based one-class time-series classification approach using local cluster balance (OCLCB) is proposed. OCLCB extracts feature vectors, namely, local cluster balance (LCB), from the clustering results of sliding windows. K-means clustering is applied to the sliding windows extracted from the training signal. Then, the local prototype (LP) is calculated as the average of the local cluster balance (LCB) in the training data. Unseen scores are computed as the distance metrics between LP and LCBs in the testing data. Since the sliding window size is independent of the entire signal size, OCLCB does not need to retrain the model. This aspect gives the benefit of reducing the parameter tuning costs. The source code is uploaded at https://github.com/ToshiHayash i/OCLCB.
Název v anglickém jazyce
Distance-based one-class time-series classification approach using local cluster balance
Popis výsledku anglicky
Deciding the signal length is an important challenge for one-class time-series classification (OCTSC). This paper aims to develop an OCTSC algorithm that does not require model retraining for different signal lengths. For this purpose, a distance-based one-class time-series classification approach using local cluster balance (OCLCB) is proposed. OCLCB extracts feature vectors, namely, local cluster balance (LCB), from the clustering results of sliding windows. K-means clustering is applied to the sliding windows extracted from the training signal. Then, the local prototype (LP) is calculated as the average of the local cluster balance (LCB) in the training data. Unseen scores are computed as the distance metrics between LP and LCBs in the testing data. Since the sliding window size is independent of the entire signal size, OCLCB does not need to retrain the model. This aspect gives the benefit of reducing the parameter tuning costs. The source code is uploaded at https://github.com/ToshiHayash i/OCLCB.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert systems with applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
235
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
"Article Number: 121201"
Kód UT WoS článku
001059416500001
EID výsledku v databázi Scopus
2-s2.0-85168558271