Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020594" target="_blank" >RIV/62690094:18470/23:50020594 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0141933123000248?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0141933123000248?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.micpro.2023.104778" target="_blank" >10.1016/j.micpro.2023.104778</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset

  • Popis výsledku v původním jazyce

    Feature selection is one of the most important challenges in machine learning and data science. This process is usually performed in the data preprocessing phase, where the data is transformed to a proper format for further operations by machine learning algorithm. Many real-world datasets are highly dimensional with many irrelevant, even redundant features. These kinds of features do not improve classification accuracy and can even shrink down performance of a classifier. The goal of feature selection is to find optimal (or sub-optimal) subset of features that contain relevant information about the dataset from which machine learning algorithms can derive useful conclusions. In this manuscript, a novel version of firefly algorithm (FA) is proposed and adapted for feature selection challenge. Proposed method significantly improves performance of the basic FA, and also outperforms other state-of-the-art metaheuristics for both, benchmark bound-constrained and practical feature selection tasks. Method was first validated on standard unconstrained benchmarks and later it was applied for feature selection by using 21 standard University of California, Irvine (UCL) datasets. Moreover, presented approach was also tested for relatively novel COVID-19 dataset for predicting patients health, and one microcontroller microarray dataset. Results obtained in all practical simulations attest robustness and efficiency of proposed algorithm in terms of convergence, solutions&apos; quality and classification accuracy. More precisely, the proposed approach obtained the best classification accuracy on 13 out of 21 total datasets, significantly outperforming other competitor methods.

  • Název v anglickém jazyce

    A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset

  • Popis výsledku anglicky

    Feature selection is one of the most important challenges in machine learning and data science. This process is usually performed in the data preprocessing phase, where the data is transformed to a proper format for further operations by machine learning algorithm. Many real-world datasets are highly dimensional with many irrelevant, even redundant features. These kinds of features do not improve classification accuracy and can even shrink down performance of a classifier. The goal of feature selection is to find optimal (or sub-optimal) subset of features that contain relevant information about the dataset from which machine learning algorithms can derive useful conclusions. In this manuscript, a novel version of firefly algorithm (FA) is proposed and adapted for feature selection challenge. Proposed method significantly improves performance of the basic FA, and also outperforms other state-of-the-art metaheuristics for both, benchmark bound-constrained and practical feature selection tasks. Method was first validated on standard unconstrained benchmarks and later it was applied for feature selection by using 21 standard University of California, Irvine (UCL) datasets. Moreover, presented approach was also tested for relatively novel COVID-19 dataset for predicting patients health, and one microcontroller microarray dataset. Results obtained in all practical simulations attest robustness and efficiency of proposed algorithm in terms of convergence, solutions&apos; quality and classification accuracy. More precisely, the proposed approach obtained the best classification accuracy on 13 out of 21 total datasets, significantly outperforming other competitor methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MICROPROCESSORS AND MICROSYSTEMS

  • ISSN

    0141-9331

  • e-ISSN

    1872-9436

  • Svazek periodika

    98

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    21

  • Strana od-do

    "Article Number: 104778"

  • Kód UT WoS článku

    000993462100001

  • EID výsledku v databázi Scopus

    2-s2.0-85147606124