Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients' health prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50020231" target="_blank" >RIV/62690094:18470/22:50020231 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275727" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275727</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0275727" target="_blank" >10.1371/journal.pone.0275727</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients' health prediction
Popis výsledku v původním jazyce
The fast-growing quantity of information hinders the process of machine learning, making it computationally costly and with substandard results. Feature selection is a pre-processing method for obtaining the optimal subset of features in a data set. Optimization algorithms struggle to decrease the dimensionality while retaining accuracy in high-dimensional data set. This article proposes a novel chaotic opposition fruit fly optimization algorithm, an improved variation of the original fruit fly algorithm, advanced and adapted for binary optimization problems. The proposed algorithm is tested on ten unconstrained benchmark functions and evaluated on twenty-one standard datasets taken from the Univesity of California, Irvine repository and Arizona State University. Further, the presented algorithm is assessed on a coronavirus disease dataset, as well. The proposed method is then compared with several well-known feature selection algorithms on the same datasets. The results prove that the presented algorithm predominantly outperform other algorithms in selecting the most relevant features by decreasing the number of utilized features and improving classification accuracy.
Název v anglickém jazyce
Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients' health prediction
Popis výsledku anglicky
The fast-growing quantity of information hinders the process of machine learning, making it computationally costly and with substandard results. Feature selection is a pre-processing method for obtaining the optimal subset of features in a data set. Optimization algorithms struggle to decrease the dimensionality while retaining accuracy in high-dimensional data set. This article proposes a novel chaotic opposition fruit fly optimization algorithm, an improved variation of the original fruit fly algorithm, advanced and adapted for binary optimization problems. The proposed algorithm is tested on ten unconstrained benchmark functions and evaluated on twenty-one standard datasets taken from the Univesity of California, Irvine repository and Arizona State University. Further, the presented algorithm is assessed on a coronavirus disease dataset, as well. The proposed method is then compared with several well-known feature selection algorithms on the same datasets. The results prove that the presented algorithm predominantly outperform other algorithms in selecting the most relevant features by decreasing the number of utilized features and improving classification accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
"Article Number: e0275727"
Kód UT WoS článku
000924647500036
EID výsledku v databázi Scopus
2-s2.0-85139572976