Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020595" target="_blank" >RIV/62690094:18470/23:50020595 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844023025859?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844023025859?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2023.e15378" target="_blank" >10.1016/j.heliyon.2023.e15378</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection
Popis výsledku v původním jazyce
With the whirlwind evolution of technology, the quantity of stored data within datasets is rapidly expanding. As a result, extracting crucial and relevant information from said datasets is a gruelling task. Feature selection is a critical preprocessing task for machine learning to reduce the excess data in a set. This research presents a novel quasi-reflection learning arithmetic optimization algorithm -firefly search, an enhanced version of the original arithmetic optimization algorithm. Quasi-reflection learning mechanism was implemented for enhancement of population diversity, while firefly algorithm metaheuristics were used to improve the exploitation abilities of the original arithmetic optimization algorithm. The aim of this wrapper-based method is to tackle a specific classification problem by selecting an optimal feature subset. The proposed algorithm is tested and compared with various well-known methods on ten unconstrained benchmark functions, then on twenty-one standard datasets gathered from the University of California, Irvine Repository and Arizona State University. Additionally, the proposed approach is applied to the Corona disease dataset. The experimental results verify the improvements of the presented method and their statistical significance.
Název v anglickém jazyce
Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection
Popis výsledku anglicky
With the whirlwind evolution of technology, the quantity of stored data within datasets is rapidly expanding. As a result, extracting crucial and relevant information from said datasets is a gruelling task. Feature selection is a critical preprocessing task for machine learning to reduce the excess data in a set. This research presents a novel quasi-reflection learning arithmetic optimization algorithm -firefly search, an enhanced version of the original arithmetic optimization algorithm. Quasi-reflection learning mechanism was implemented for enhancement of population diversity, while firefly algorithm metaheuristics were used to improve the exploitation abilities of the original arithmetic optimization algorithm. The aim of this wrapper-based method is to tackle a specific classification problem by selecting an optimal feature subset. The proposed algorithm is tested and compared with various well-known methods on ten unconstrained benchmark functions, then on twenty-one standard datasets gathered from the University of California, Irvine Repository and Arizona State University. Additionally, the proposed approach is applied to the Corona disease dataset. The experimental results verify the improvements of the presented method and their statistical significance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
HELIYON
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
9
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
"Article Number: e15378"
Kód UT WoS článku
000998679400001
EID výsledku v databázi Scopus
2-s2.0-85152116903