A Chaotic Oppositional Whale Optimisation Algorithm with Firefly Search for Medical Diagnostics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019400" target="_blank" >RIV/62690094:18470/22:50019400 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/cmc/v72n1/46919" target="_blank" >https://www.techscience.com/cmc/v72n1/46919</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmc.2022.024989" target="_blank" >10.32604/cmc.2022.024989</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Chaotic Oppositional Whale Optimisation Algorithm with Firefly Search for Medical Diagnostics
Popis výsledku v původním jazyce
There is a growing interest in the study development of artificial intelligence and machine learning, especially regarding the support vector machine pattern classification method. This study proposes an enhanced implementation of the well-known whale optimisation algorithm, which combines chaotic and opposition-based learning strategies, which is adopted for hyper-parameter optimisation and feature selection machine learning challenges. The whale optimisation algorithm is a relatively recent addition to the group of swarm intelligence algorithms commonly used for optimisation. The Proposed improved whale optimisation algorithm was first tested for standard unconstrained CEC2017 benchmark suite and it was later adapted for simultaneous feature selection and support vector machine hyper-parameter tuning and validated for medical diagnostics by using breast cancer, diabetes, and erythemato-squamous dataset. The performance of the proposed model is compared with multiple competitive support vector machine models boosted with other metaheuristics, including another improved whale optimisation sation algorithms, and genetic algorithms. Results of the simulation show that the proposed model outperforms other competitors concerning the performance of classification and the selected subset feature size.
Název v anglickém jazyce
A Chaotic Oppositional Whale Optimisation Algorithm with Firefly Search for Medical Diagnostics
Popis výsledku anglicky
There is a growing interest in the study development of artificial intelligence and machine learning, especially regarding the support vector machine pattern classification method. This study proposes an enhanced implementation of the well-known whale optimisation algorithm, which combines chaotic and opposition-based learning strategies, which is adopted for hyper-parameter optimisation and feature selection machine learning challenges. The whale optimisation algorithm is a relatively recent addition to the group of swarm intelligence algorithms commonly used for optimisation. The Proposed improved whale optimisation algorithm was first tested for standard unconstrained CEC2017 benchmark suite and it was later adapted for simultaneous feature selection and support vector machine hyper-parameter tuning and validated for medical diagnostics by using breast cancer, diabetes, and erythemato-squamous dataset. The performance of the proposed model is compared with multiple competitive support vector machine models boosted with other metaheuristics, including another improved whale optimisation sation algorithms, and genetic algorithms. Results of the simulation show that the proposed model outperforms other competitors concerning the performance of classification and the selected subset feature size.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CMC-Computers, Materials & Continua
ISSN
1546-2218
e-ISSN
1546-2226
Svazek periodika
72
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
959-982
Kód UT WoS článku
000763489500020
EID výsledku v databázi Scopus
2-s2.0-85125424539