Evaluation of English-Slovak neural and statistical machine translation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917743" target="_blank" >RIV/00216275:25410/21:39917743 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/11/7/2948/htm" target="_blank" >https://www.mdpi.com/2076-3417/11/7/2948/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app11072948" target="_blank" >10.3390/app11072948</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of English-Slovak neural and statistical machine translation
Popis výsledku v původním jazyce
This study is focused on the comparison of phrase-based statistical machine translation (SMT) systems and neural machine translation (NMT) systems using automatic metrics for translation quality evaluation for the language pair of English and Slovak. As the statistical approach is the predecessor of neural machine translation, it was assumed that the neural network approach would generate results with a better quality. An experiment was performed using residuals to compare the scores of automatic metrics of the accuracy (BLEU_n) of the statistical machine translation with those of the neural machine translation. The results showed that the assumption of better neural machine translation quality regardless of the system used was confirmed. There were statistically significant differences between the SMT and NMT in favor of the NMT based on all BLEU_n scores. The neural machine translation achieved a better quality of translation of journalistic texts from English into Slovak, regardless of if it was a system trained on general texts, such as Google Translate, or specific ones, such as the European Commission's (EC's) tool, which was trained on a specific-domain.
Název v anglickém jazyce
Evaluation of English-Slovak neural and statistical machine translation
Popis výsledku anglicky
This study is focused on the comparison of phrase-based statistical machine translation (SMT) systems and neural machine translation (NMT) systems using automatic metrics for translation quality evaluation for the language pair of English and Slovak. As the statistical approach is the predecessor of neural machine translation, it was assumed that the neural network approach would generate results with a better quality. An experiment was performed using residuals to compare the scores of automatic metrics of the accuracy (BLEU_n) of the statistical machine translation with those of the neural machine translation. The results showed that the assumption of better neural machine translation quality regardless of the system used was confirmed. There were statistically significant differences between the SMT and NMT in favor of the NMT based on all BLEU_n scores. The neural machine translation achieved a better quality of translation of journalistic texts from English into Slovak, regardless of if it was a system trained on general texts, such as Google Translate, or specific ones, such as the European Commission's (EC's) tool, which was trained on a specific-domain.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Science - Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
2948
Kód UT WoS článku
000638326200001
EID výsledku v databázi Scopus
2-s2.0-85103847403