Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920761" target="_blank" >RIV/00216275:25410/23:39920761 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0275531922002495?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0275531922002495?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ribaf.2022.101863" target="_blank" >10.1016/j.ribaf.2022.101863</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network
Popis výsledku v původním jazyce
This paper aims to develop an artificial neural network-based forecasting model employing a nonlinear focused time-delayed neural network (FTDNN) for energy commodity market forecasts. To validate the proposed model, crude oil and natural gas prices are used for the period 2007-2020, including the Covid-19 period. Empirical findings show that the FTDNN model outperforms existing baselines and artificial neural network-based models in forecasting West Texas Intermediate and Brent crude oil prices and National Balancing Point and Henry Hub natural gas prices. As a result, we demonstrate the predictability of energy commodity prices during the volatile crisis period, which is attributed to the flexibility of the model parameters, implying that our study can facilitate a better understanding of the dynamics of commodity prices in the energy market.
Název v anglickém jazyce
Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network
Popis výsledku anglicky
This paper aims to develop an artificial neural network-based forecasting model employing a nonlinear focused time-delayed neural network (FTDNN) for energy commodity market forecasts. To validate the proposed model, crude oil and natural gas prices are used for the period 2007-2020, including the Covid-19 period. Empirical findings show that the FTDNN model outperforms existing baselines and artificial neural network-based models in forecasting West Texas Intermediate and Brent crude oil prices and National Balancing Point and Henry Hub natural gas prices. As a result, we demonstrate the predictability of energy commodity prices during the volatile crisis period, which is attributed to the flexibility of the model parameters, implying that our study can facilitate a better understanding of the dynamics of commodity prices in the energy market.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Research in International Business and Finance
ISSN
0275-5319
e-ISSN
1878-3384
Svazek periodika
64
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
101863
Kód UT WoS článku
000916569300001
EID výsledku v databázi Scopus
2-s2.0-85144919650