Combining high frequency data with non-linear models for forecasting energy market volatility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00456185" target="_blank" >RIV/67985556:_____/16:00456185 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11230/16:10323719
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.eswa.2016.02.008" target="_blank" >http://dx.doi.org/10.1016/j.eswa.2016.02.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2016.02.008" target="_blank" >10.1016/j.eswa.2016.02.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining high frequency data with non-linear models for forecasting energy market volatility
Popis výsledku v původním jazyce
The popularity of realized measures and various linear models for volatility forecasting has been the focus of attention in the literature addressing energy markets' price variability over the past decade. However, there are no studies to help practitioners achieve optimal forecasting accuracy by guiding them to a specific estimator and model. This paper contributes to this literature in two ways. First, to capture the complex patterns hidden in linear models commonly used to forecast realized volatility, we propose a novel framework that couples realized measures with generalized regression based on artificial neural networks. Our second contribution is to comprehensively evaluate multiple-step-ahead volatility forecasts of energy markets using several popular high frequency measures and forecasting models. We compare forecasting performance across models and across realized measures of crude oil, heating oil, and natural gas volatility during three qualitatively distinct periods: the pre-crisis period, the 2008 global financial crisis, and the post-crisis period.
Název v anglickém jazyce
Combining high frequency data with non-linear models for forecasting energy market volatility
Popis výsledku anglicky
The popularity of realized measures and various linear models for volatility forecasting has been the focus of attention in the literature addressing energy markets' price variability over the past decade. However, there are no studies to help practitioners achieve optimal forecasting accuracy by guiding them to a specific estimator and model. This paper contributes to this literature in two ways. First, to capture the complex patterns hidden in linear models commonly used to forecast realized volatility, we propose a novel framework that couples realized measures with generalized regression based on artificial neural networks. Our second contribution is to comprehensively evaluate multiple-step-ahead volatility forecasts of energy markets using several popular high frequency measures and forecasting models. We compare forecasting performance across models and across realized measures of crude oil, heating oil, and natural gas volatility during three qualitatively distinct periods: the pre-crisis period, the 2008 global financial crisis, and the post-crisis period.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems With Applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
36
Strana od-do
222-242
Kód UT WoS článku
000374811000017
EID výsledku v databázi Scopus
2-s2.0-84960075958