How well do investor sentiment and ensemble learning predict Bitcoin prices?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920845" target="_blank" >RIV/00216275:25410/23:39920845 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0275531922002227" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0275531922002227</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ribaf.2022.101836" target="_blank" >10.1016/j.ribaf.2022.101836</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How well do investor sentiment and ensemble learning predict Bitcoin prices?
Popis výsledku v původním jazyce
Investor sentiment is widely recognized as the major determinant of cryptocurrency prices. Although earlier research has revealed the influence of investor sentiment on cryptocurrency prices, it has not yet generated cohesive empirical findings on an important question: How effective is investor sentiment in predicting cryptocurrency prices? To address this gap, we propose a novel prediction model based on the Bitcoin Misery Index, using trading data for cryptocurrency rather than judgments from individuals who are not Bitcoin investors, as well as bagged support vector regression (BSVR), to forecast Bitcoin prices. The empirical analysis is performed for the period between March 2018 and May 2022. The results of this study suggest that the addition of the sentiment index enhances the predictive performance of BSVR signifi-cantly. Moreover, the proposed prediction system, enhanced with an automatic feature selection component, outperforms state-of-the-art methods for predicting cryptocurrency for the next 30 days.
Název v anglickém jazyce
How well do investor sentiment and ensemble learning predict Bitcoin prices?
Popis výsledku anglicky
Investor sentiment is widely recognized as the major determinant of cryptocurrency prices. Although earlier research has revealed the influence of investor sentiment on cryptocurrency prices, it has not yet generated cohesive empirical findings on an important question: How effective is investor sentiment in predicting cryptocurrency prices? To address this gap, we propose a novel prediction model based on the Bitcoin Misery Index, using trading data for cryptocurrency rather than judgments from individuals who are not Bitcoin investors, as well as bagged support vector regression (BSVR), to forecast Bitcoin prices. The empirical analysis is performed for the period between March 2018 and May 2022. The results of this study suggest that the addition of the sentiment index enhances the predictive performance of BSVR signifi-cantly. Moreover, the proposed prediction system, enhanced with an automatic feature selection component, outperforms state-of-the-art methods for predicting cryptocurrency for the next 30 days.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-22586S" target="_blank" >GA22-22586S: Aspektově orientovaná analýza sentimentu finančních textů pro predikci finanční výkonnosti podniku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Research in International Business and Finance
ISSN
0275-5319
e-ISSN
1878-3384
Svazek periodika
64
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
101836
Kód UT WoS článku
000919065300001
EID výsledku v databázi Scopus
2-s2.0-85145720521