Product backorder prediction using deep neural network on imbalanced data
Popis výsledku
—
Klíčová slova
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
https://www.tandfonline.com/doi/abs/10.1080/00207543.2021.1901153
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Product backorder prediction using deep neural network on imbalanced data
Popis výsledku v původním jazyce
Taking backorders on products is a common scenario in inventory and supply chain management systems. The ability to predict the likelihood of backorders can surely minimise a company's losses. Because the number of backorders is much lower than the number of orders that ship on time, applying a predictive model for this domain is a challenging task. This paper proposes a model that uses a deep neural network to predict backorders; it handles the data imbalance between backorders and filled orders with efficient techniques. To make the dataset balanced, we employ different techniques that include minority class weight boosting, randomised oversampling, SMOTE oversampling, and a combination of oversampling and undersampling. The balanced training data are used in our proposed, fully connected deep neural networks model to train the predictive model. The predictive model learns the likelihood of product backorders by using the training samples. We conduct experiments on a large benchmark dataset to test the performance of our proposed deep neural network-based model. The experimental results achieve a new state-of-the-art performance and outperform some prominent classification models in terms of standard evaluation metrics and expected profit measure.
Název v anglickém jazyce
Product backorder prediction using deep neural network on imbalanced data
Popis výsledku anglicky
Taking backorders on products is a common scenario in inventory and supply chain management systems. The ability to predict the likelihood of backorders can surely minimise a company's losses. Because the number of backorders is much lower than the number of orders that ship on time, applying a predictive model for this domain is a challenging task. This paper proposes a model that uses a deep neural network to predict backorders; it handles the data imbalance between backorders and filled orders with efficient techniques. To make the dataset balanced, we employ different techniques that include minority class weight boosting, randomised oversampling, SMOTE oversampling, and a combination of oversampling and undersampling. The balanced training data are used in our proposed, fully connected deep neural networks model to train the predictive model. The predictive model learns the likelihood of product backorders by using the training samples. We conduct experiments on a large benchmark dataset to test the performance of our proposed deep neural network-based model. The experimental results achieve a new state-of-the-art performance and outperform some prominent classification models in terms of standard evaluation metrics and expected profit measure.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International journal of production research
ISSN
0020-7543
e-ISSN
1366-588X
Svazek periodika
61
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
302-319
Kód UT WoS článku
000631418900001
EID výsledku v databázi Scopus
2-s2.0-85102925635
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Business and management
Rok uplatnění
2023