Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Explainable Federated Learning and Blockchain-based Secure Credit Modeling Method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F24%3A39922244" target="_blank" >RIV/00216275:25410/24:39922244 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0377221723006677" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377221723006677</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejor.2023.08.040" target="_blank" >10.1016/j.ejor.2023.08.040</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Explainable Federated Learning and Blockchain-based Secure Credit Modeling Method

  • Popis výsledku v původním jazyce

    Federated learning has drawn a lot of interest as a powerful technological solution to the &quot;credit data silo&quot; problem. The interpretability of federated learning is a crucial issue due to the lack of user interaction and the complexity of credit data monitoring. We advocate the importance of a credit data processing- as-a-service model, which completes conventional credit models in local environments, in order to overcome these restrictions. In particular, we describe an explainable federated learning and blockchain-based credit scoring system (EFCS) in this work. First, we propose an explainable federated learning method with controllable machine learning efficiency and controllable credit model decision making, thus having controllable credit model complexity and transparent and traceable credit decision-making mechanism. Then, we suggest an explainable federated learning training mechanism for credit data that prevents leakage of the model gradients trained by individual nodes during the training of the overall model. Neither the credit data provider nor the data user has access to the raw data in the credit model training ecosystem. Therefore, privacy protection, model performance, and algorithm efficiency, the core triangular cornerstones of federated learning, when added with model interpretability, together constitute a more secure and trustworthy federated learning-based methodology, thus providing a more reliable service for credit model training and construction. The EFCS scheme is presented via simulations of different types of federated learning and their resistance to system attack, applying the proposed model to six different credit scoring datasets. Extensive experimental analyses support the efficiency, security, and explainability of the EFCS.

  • Název v anglickém jazyce

    An Explainable Federated Learning and Blockchain-based Secure Credit Modeling Method

  • Popis výsledku anglicky

    Federated learning has drawn a lot of interest as a powerful technological solution to the &quot;credit data silo&quot; problem. The interpretability of federated learning is a crucial issue due to the lack of user interaction and the complexity of credit data monitoring. We advocate the importance of a credit data processing- as-a-service model, which completes conventional credit models in local environments, in order to overcome these restrictions. In particular, we describe an explainable federated learning and blockchain-based credit scoring system (EFCS) in this work. First, we propose an explainable federated learning method with controllable machine learning efficiency and controllable credit model decision making, thus having controllable credit model complexity and transparent and traceable credit decision-making mechanism. Then, we suggest an explainable federated learning training mechanism for credit data that prevents leakage of the model gradients trained by individual nodes during the training of the overall model. Neither the credit data provider nor the data user has access to the raw data in the credit model training ecosystem. Therefore, privacy protection, model performance, and algorithm efficiency, the core triangular cornerstones of federated learning, when added with model interpretability, together constitute a more secure and trustworthy federated learning-based methodology, thus providing a more reliable service for credit model training and construction. The EFCS scheme is presented via simulations of different types of federated learning and their resistance to system attack, applying the proposed model to six different credit scoring datasets. Extensive experimental analyses support the efficiency, security, and explainability of the EFCS.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-22586S" target="_blank" >GA22-22586S: Aspektově orientovaná analýza sentimentu finančních textů pro predikci finanční výkonnosti podniku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Operational Research

  • ISSN

    0377-2217

  • e-ISSN

    1872-6860

  • Svazek periodika

    317

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    19

  • Strana od-do

    449-467

  • Kód UT WoS článku

    001320701100001

  • EID výsledku v databázi Scopus

    2-s2.0-85171356179