Model-Free-Communication Federated Learning: Framework and application to Precision Medicine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43969347" target="_blank" >RIV/49777513:23520/24:43969347 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1746809423008492" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1746809423008492</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2023.105416" target="_blank" >10.1016/j.bspc.2023.105416</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model-Free-Communication Federated Learning: Framework and application to Precision Medicine
Popis výsledku v původním jazyce
The problem of executing machine learning algorithms over data while complying with data privacy is highly relevant in many application areas, including medicine in general and Precision Medicine in particular. In this paper, an innovative framework for Federated Learning is proposed that allows performing machine learning and effectively tackling the issue of data privacy while taking a step towards security during communication. Unlike the standard federated approaches where models should travel on the communication networks and would be subject to possible cyberattacks, the models proposed by our framework do not need to travel, thus moving in the direction of security improvement. Another very appealing feature is that it can be used with any machine learning algorithm provided that, during the learning phase, the model updating does not depend on the input data. To show its effectiveness, the learning process is here accomplished by an Evolutionary Algorithm, namely Grammatical Evolution, thus also obtaining explicit knowledge that can be provided to the domain experts to justify the decisions made. As a test case, glucose values prediction for a number of patients with type 1 diabetes is considered and is tackled as a classification problem, the goal being to predict for any future value a possible range. Finally, a comparison of the performance of the proposed framework is performed against that of a non-Federated Learning approach.
Název v anglickém jazyce
Model-Free-Communication Federated Learning: Framework and application to Precision Medicine
Popis výsledku anglicky
The problem of executing machine learning algorithms over data while complying with data privacy is highly relevant in many application areas, including medicine in general and Precision Medicine in particular. In this paper, an innovative framework for Federated Learning is proposed that allows performing machine learning and effectively tackling the issue of data privacy while taking a step towards security during communication. Unlike the standard federated approaches where models should travel on the communication networks and would be subject to possible cyberattacks, the models proposed by our framework do not need to travel, thus moving in the direction of security improvement. Another very appealing feature is that it can be used with any machine learning algorithm provided that, during the learning phase, the model updating does not depend on the input data. To show its effectiveness, the learning process is here accomplished by an Evolutionary Algorithm, namely Grammatical Evolution, thus also obtaining explicit knowledge that can be provided to the domain experts to justify the decisions made. As a test case, glucose values prediction for a number of patients with type 1 diabetes is considered and is tackled as a classification problem, the goal being to predict for any future value a possible range. Finally, a comparison of the performance of the proposed framework is performed against that of a non-Federated Learning approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
1746-8108
Svazek periodika
87B
Číslo periodika v rámci svazku
105416
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
001083187800001
EID výsledku v databázi Scopus
2-s2.0-85171788413