A Federated Learning-Inspired Evolutionary Algorithm: Application to Glucose Prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00669806%3A_____%2F23%3A10478618" target="_blank" >RIV/00669806:_____/23:10478618 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23520/23:43968404
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wS4006VcUp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wS4006VcUp</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s23062957" target="_blank" >10.3390/s23062957</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Federated Learning-Inspired Evolutionary Algorithm: Application to Glucose Prediction
Popis výsledku v původním jazyce
In this paper, we propose an innovative Federated Learning-inspired evolutionary framework. Its main novelty is that this is the first time that an Evolutionary Algorithm is employed on its own to directly perform Federated Learning activity. A further novelty resides in the fact that, differently from the other Federated Learning frameworks in the literature, ours can efficiently deal at the same time with two relevant issues in Machine Learning, i.e., data privacy and interpretability of the solutions. Our framework consists of a master/slave approach in which each slave contains local data, protecting sensible private data, and exploits an evolutionary algorithm to generate prediction models. The master shares through the slaves the locally learned models that emerge on each slave. Sharing these local models results in global models. Being that data privacy and interpretability are very significant in the medical domain, the algorithm is tested to forecast future glucose values for diabetic patients by exploiting a Grammatical Evolution algorithm. The effectiveness of this knowledge-sharing process is assessed experimentally by comparing the proposed framework with another where no exchange of local models occurs. The results show that the performance of the proposed approach is better and demonstrate the validity of its sharing process for the emergence of local models for personal diabetes management, usable as efficient global models. When further subjects not involved in the learning process are considered, the models discovered by our framework show higher generalization capability than those achieved without knowledge sharing: the improvement provided by knowledge sharing is equal to about 3.03% for precision, 1.56% for recall, 3.17% for F-1, and 1.56% for accuracy. Moreover, statistical analysis reveals the statistical superiority of model exchange with respect to the case of no exchange taking place.
Název v anglickém jazyce
A Federated Learning-Inspired Evolutionary Algorithm: Application to Glucose Prediction
Popis výsledku anglicky
In this paper, we propose an innovative Federated Learning-inspired evolutionary framework. Its main novelty is that this is the first time that an Evolutionary Algorithm is employed on its own to directly perform Federated Learning activity. A further novelty resides in the fact that, differently from the other Federated Learning frameworks in the literature, ours can efficiently deal at the same time with two relevant issues in Machine Learning, i.e., data privacy and interpretability of the solutions. Our framework consists of a master/slave approach in which each slave contains local data, protecting sensible private data, and exploits an evolutionary algorithm to generate prediction models. The master shares through the slaves the locally learned models that emerge on each slave. Sharing these local models results in global models. Being that data privacy and interpretability are very significant in the medical domain, the algorithm is tested to forecast future glucose values for diabetic patients by exploiting a Grammatical Evolution algorithm. The effectiveness of this knowledge-sharing process is assessed experimentally by comparing the proposed framework with another where no exchange of local models occurs. The results show that the performance of the proposed approach is better and demonstrate the validity of its sharing process for the emergence of local models for personal diabetes management, usable as efficient global models. When further subjects not involved in the learning process are considered, the models discovered by our framework show higher generalization capability than those achieved without knowledge sharing: the improvement provided by knowledge sharing is equal to about 3.03% for precision, 1.56% for recall, 3.17% for F-1, and 1.56% for accuracy. Moreover, statistical analysis reveals the statistical superiority of model exchange with respect to the case of no exchange taking place.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30202 - Endocrinology and metabolism (including diabetes, hormones)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
1424-8220
Svazek periodika
23
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
2957
Kód UT WoS článku
000960529400001
EID výsledku v databázi Scopus
2-s2.0-85151462629