Genetic Algorithms for Solving Vehicle Routing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F11%3A39894519" target="_blank" >RIV/00216275:25510/11:39894519 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genetic Algorithms for Solving Vehicle Routing
Popis výsledku v původním jazyce
Author in this paper describes the possibilities of solving some vehicle routing variants by genetic algorithm. Specifically, it is a classical capacitated vehicle routing problem (CVRP), vehicle routing problem with time windows (VRP-TW), vehicle routing problem with simultaneous deliveries and pick-ups (VRPDP) and their mutual combinations. Genetic algorithms are a search method used to find suboptimal solutions of complicated combinatorial problems including vehicle routing. Genetic algorithm (GVR) is quite universal due to the two-level representation of the problem - without major modifications it enables successful solving of CVRP, VRP-TW and possibly also other variants of the problem. GVR enables also fast search for new solutions - operators of crossover and mutations provide solutions whose adjustment is not time demanding, and quality of provided solutions is very good, GVR verified with standard data. Parameters of genetic algorithm can be modified in the program environmen
Název v anglickém jazyce
Genetic Algorithms for Solving Vehicle Routing
Popis výsledku anglicky
Author in this paper describes the possibilities of solving some vehicle routing variants by genetic algorithm. Specifically, it is a classical capacitated vehicle routing problem (CVRP), vehicle routing problem with time windows (VRP-TW), vehicle routing problem with simultaneous deliveries and pick-ups (VRPDP) and their mutual combinations. Genetic algorithms are a search method used to find suboptimal solutions of complicated combinatorial problems including vehicle routing. Genetic algorithm (GVR) is quite universal due to the two-level representation of the problem - without major modifications it enables successful solving of CVRP, VRP-TW and possibly also other variants of the problem. GVR enables also fast search for new solutions - operators of crossover and mutations provide solutions whose adjustment is not time demanding, and quality of provided solutions is very good, GVR verified with standard data. Parameters of genetic algorithm can be modified in the program environmen
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JO - Pozemní dopravní systémy a zařízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Papers of the University of Pardubice, Series B, The Jan Perner Transport Faculty
ISSN
1211-6610
e-ISSN
—
Svazek periodika
2010
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
75-84
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—