Reliability analysis of a shear-critical beam
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F18%3A39917034" target="_blank" >RIV/00216275:25510/18:39917034 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85085566129&origin=resultslist" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85085566129&origin=resultslist</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reliability analysis of a shear-critical beam
Popis výsledku v původním jazyce
The response of a reinforced concrete beam constructed without transverse reinforcement to achieve shear failure was investigated by experimental and numerical methods. Due to inherent uncertainties in material constitutive models, a nonlinear finite element method (FEM) was combined with a suitable stochastic sampling technique to propose a more advanced model for estimating the response of a shear-critical beam. For this purpose, the specimen was first tested under monotonic loading up to shear failure by a four-point bending test. Then, the stochastic model was developed by using Latin Hypercube Sampling (LHS) including statistical correlation among the prominent material parameters. Random parameters of concrete and reinforcement steel were defined in accordance with the material test results and code recommendations. The constituent outcomes of the stochastic model including a set of load-displacement curves are presented. The results of the stochastic approach matched well with the behavior of the specimen observed during the experimental test. The probability density function for ultimate load was obtained. After that, the reliability of the member for the ultimate limit state was compared with the code requirements to ensure the safe loading range. The design load, which corresponds the failure probability related to ultimate limit state was computed. Moreover, a simplified ECOV (Estimation of Coefficient of Variation) method was carried out to estimate the design load. It is found that the load obtained from reliability analyses for design load was reasonably in good agreement with the code recommended value.
Název v anglickém jazyce
Reliability analysis of a shear-critical beam
Popis výsledku anglicky
The response of a reinforced concrete beam constructed without transverse reinforcement to achieve shear failure was investigated by experimental and numerical methods. Due to inherent uncertainties in material constitutive models, a nonlinear finite element method (FEM) was combined with a suitable stochastic sampling technique to propose a more advanced model for estimating the response of a shear-critical beam. For this purpose, the specimen was first tested under monotonic loading up to shear failure by a four-point bending test. Then, the stochastic model was developed by using Latin Hypercube Sampling (LHS) including statistical correlation among the prominent material parameters. Random parameters of concrete and reinforcement steel were defined in accordance with the material test results and code recommendations. The constituent outcomes of the stochastic model including a set of load-displacement curves are presented. The results of the stochastic approach matched well with the behavior of the specimen observed during the experimental test. The probability density function for ultimate load was obtained. After that, the reliability of the member for the ultimate limit state was compared with the code requirements to ensure the safe loading range. The design load, which corresponds the failure probability related to ultimate limit state was computed. Moreover, a simplified ECOV (Estimation of Coefficient of Variation) method was carried out to estimate the design load. It is found that the load obtained from reliability analyses for design load was reasonably in good agreement with the code recommended value.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th National Conference on Earthquake Engineering 2018, NCEE 2018 : Integrating Science, Engineering, and Policy
ISBN
978-1-5108-7325-4
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
5008-5017
Název nakladatele
Earthquake Engineering Research Institute
Místo vydání
Oakland
Místo konání akce
Los Angeles
Datum konání akce
25. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—