Velocity measurement-based friction estimation for railway vehicles running on adhesion limit: swarm intelligence-based multiple models approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F20%3A39914476" target="_blank" >RIV/00216275:25510/20:39914476 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/abs/10.1080/15472450.2018.1542305?journalCode=gits20" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/15472450.2018.1542305?journalCode=gits20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/15472450.2018.1542305" target="_blank" >10.1080/15472450.2018.1542305</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Velocity measurement-based friction estimation for railway vehicles running on adhesion limit: swarm intelligence-based multiple models approach
Popis výsledku v původním jazyce
Model-based condition monitoring is an increasingly important area for rail transportation. The key elements of such condition monitoring methodologies are low-cost vehicle sensors and intelligent algorithms. In this study, a swarm intelligence-based multiple models approach is proposed to detect different friction conditions by using velocity measurements of a railway vehicle. In this case of application, estimated parameter is the maximum friction coefficient. Additionally, proposed methodology is tested experimentally by using the measurements taken from a tram wheel test stand. Multiple mathematical models of the test stand are created with different maximum friction coefficients, whereas all initial conditions and other system parameters are same for each model. Therefore, comparison of the output of each model with measurements is considered to interpret the parameter value of the model, which best represents the system, is selected as parameter estimate. Unlike the traditional multiple models approach, a swarm intelligence-based evolution of the models is proposed. Experiments carried out on the test stand reveal that the proposed methodology is promising to be used as an on-board friction condition monitoring tool for railway vehicles with traction.
Název v anglickém jazyce
Velocity measurement-based friction estimation for railway vehicles running on adhesion limit: swarm intelligence-based multiple models approach
Popis výsledku anglicky
Model-based condition monitoring is an increasingly important area for rail transportation. The key elements of such condition monitoring methodologies are low-cost vehicle sensors and intelligent algorithms. In this study, a swarm intelligence-based multiple models approach is proposed to detect different friction conditions by using velocity measurements of a railway vehicle. In this case of application, estimated parameter is the maximum friction coefficient. Additionally, proposed methodology is tested experimentally by using the measurements taken from a tram wheel test stand. Multiple mathematical models of the test stand are created with different maximum friction coefficients, whereas all initial conditions and other system parameters are same for each model. Therefore, comparison of the output of each model with measurements is considered to interpret the parameter value of the model, which best represents the system, is selected as parameter estimate. Unlike the traditional multiple models approach, a swarm intelligence-based evolution of the models is proposed. Experiments carried out on the test stand reveal that the proposed methodology is promising to be used as an on-board friction condition monitoring tool for railway vehicles with traction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent Transportation Systems
ISSN
1547-2450
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
93-107
Kód UT WoS článku
000489989200001
EID výsledku v databázi Scopus
2-s2.0-85059559288