Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FTIR Spectrometry with PLS Regression for Rapid TBN Determination of Worn Mineral Engine Oils

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F20%3A39916744" target="_blank" >RIV/00216275:25510/20:39916744 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26610/20:PU138324

  • Výsledek na webu

    <a href="https://www.mdpi.com/1996-1073/13/23/6438" target="_blank" >https://www.mdpi.com/1996-1073/13/23/6438</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en13236438" target="_blank" >10.3390/en13236438</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FTIR Spectrometry with PLS Regression for Rapid TBN Determination of Worn Mineral Engine Oils

  • Popis výsledku v původním jazyce

    The TBN (Total Base Number) parameter is generally recognized by both engine oil processors and engine manufacturers as a key factor of oil quality. This is especially true for lubricating oils used in diesel and gas engines, which are exposed to relatively high temperatures and, therefore, require more effective protection against degradation. The FTIR spectrometry method together with a multivariate statistical software helped to create a model for the determination of TBN of worn motor oil SAE 15W-40 ACEA: E5/E7, API: CI-4. The best results were provided using a model FTIR with Partial Least Squares (PLS) regression in an overall range of 4000–650 cm−1 without the use of mathematical adjustments of the scanned spectra by derivation. Individual spectral information was condensed into nine principal components with linear combinations of the original absorbances at given wavenumbers that are mutually not correlated. A correlation coefficient (R) between values of TBN predicted by the FTIR-PLS model and values determined using a potentiometric titration in line with the ČSN ISO 3771 standard reached a value of 0.93. The Root Mean Square Error of Calibration (RMSEC) was determined to be 0.171 mg KOH.g−1, and the Root Mean Square Error of Prediction (RMSEP) was determined to be 0.140 mg KOH.g−1. The main advantage of the proposed FTIR-PLS model can be seen in a rapid determination and elimination of the necessity to work with dangerous chemicals. FTIR-PLS is used mainly in areas of oil analysis where the speed of analysis is often more important than high accuracy.

  • Název v anglickém jazyce

    FTIR Spectrometry with PLS Regression for Rapid TBN Determination of Worn Mineral Engine Oils

  • Popis výsledku anglicky

    The TBN (Total Base Number) parameter is generally recognized by both engine oil processors and engine manufacturers as a key factor of oil quality. This is especially true for lubricating oils used in diesel and gas engines, which are exposed to relatively high temperatures and, therefore, require more effective protection against degradation. The FTIR spectrometry method together with a multivariate statistical software helped to create a model for the determination of TBN of worn motor oil SAE 15W-40 ACEA: E5/E7, API: CI-4. The best results were provided using a model FTIR with Partial Least Squares (PLS) regression in an overall range of 4000–650 cm−1 without the use of mathematical adjustments of the scanned spectra by derivation. Individual spectral information was condensed into nine principal components with linear combinations of the original absorbances at given wavenumbers that are mutually not correlated. A correlation coefficient (R) between values of TBN predicted by the FTIR-PLS model and values determined using a potentiometric titration in line with the ČSN ISO 3771 standard reached a value of 0.93. The Root Mean Square Error of Calibration (RMSEC) was determined to be 0.171 mg KOH.g−1, and the Root Mean Square Error of Prediction (RMSEP) was determined to be 0.140 mg KOH.g−1. The main advantage of the proposed FTIR-PLS model can be seen in a rapid determination and elimination of the necessity to work with dangerous chemicals. FTIR-PLS is used mainly in areas of oil analysis where the speed of analysis is often more important than high accuracy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energies

  • ISSN

    1996-1073

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000597102900001

  • EID výsledku v databázi Scopus