Improved and vectorised matlab-based algorithms for serial and parallel implementation of finite element method in linear elasticity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F24%3A39921520" target="_blank" >RIV/00216275:25510/24:39921520 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.iitf.lbtu.lv/conference/proceedings2024/Papers/TF212.pdf" target="_blank" >https://www.iitf.lbtu.lv/conference/proceedings2024/Papers/TF212.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22616/ERDev.2024.23.TF212" target="_blank" >10.22616/ERDev.2024.23.TF212</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved and vectorised matlab-based algorithms for serial and parallel implementation of finite element method in linear elasticity
Popis výsledku v původním jazyce
This paper presents two improved algorithms for efficient sequential and parallel implementation of the Finite element method (FEM) for both linear and nonlinear boundary value problems. The proposed algorithms address some weak points, such as the overuse of for-loops and serial computing caused by dependencies in constructing fundamental expressions (global stiffness matrix, mass matrix, global force vector, etc.) resulting from the finite element method. By taking advantage of the concepts of sparse matrix representation, vectorization, and the physical architecture of modern computing resources, the proposed methods are free from mesh partitioning techniques or similar approaches and enable the use of all available CPU cores/threads without synchronization. Moreover, these algorithms are also adapted to deal with meshes involving elements of any order in both 2D and 3D. Two tests from NAFEMS benchmarks are implemented in MATLAB to verify the accuracy and stability of the proposed algorithms in both serial and parallel processing. According to serial and parallel computing results, the proposed algorithms perform better than the standard sparse assembly strategy and behave linearly with the mesh size but at a smaller rate than the latter. In parallel processing, the algorithms are also demonstrated to be accurate and achieve an efficiency of at least 60% in 2D and 70% with two cores/threads when the mesh size is greater than 10,000. Moreover, the simulations revealed that the performance gap between the proposed algorithm and the classical sparse algorithm is more pronounced in 2D than in 3D due to the increase in degrees of freedom.
Název v anglickém jazyce
Improved and vectorised matlab-based algorithms for serial and parallel implementation of finite element method in linear elasticity
Popis výsledku anglicky
This paper presents two improved algorithms for efficient sequential and parallel implementation of the Finite element method (FEM) for both linear and nonlinear boundary value problems. The proposed algorithms address some weak points, such as the overuse of for-loops and serial computing caused by dependencies in constructing fundamental expressions (global stiffness matrix, mass matrix, global force vector, etc.) resulting from the finite element method. By taking advantage of the concepts of sparse matrix representation, vectorization, and the physical architecture of modern computing resources, the proposed methods are free from mesh partitioning techniques or similar approaches and enable the use of all available CPU cores/threads without synchronization. Moreover, these algorithms are also adapted to deal with meshes involving elements of any order in both 2D and 3D. Two tests from NAFEMS benchmarks are implemented in MATLAB to verify the accuracy and stability of the proposed algorithms in both serial and parallel processing. According to serial and parallel computing results, the proposed algorithms perform better than the standard sparse assembly strategy and behave linearly with the mesh size but at a smaller rate than the latter. In parallel processing, the algorithms are also demonstrated to be accurate and achieve an efficiency of at least 60% in 2D and 70% with two cores/threads when the mesh size is greater than 10,000. Moreover, the simulations revealed that the performance gap between the proposed algorithm and the classical sparse algorithm is more pronounced in 2D than in 3D due to the increase in degrees of freedom.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering for Rural Development
ISBN
—
ISSN
1691-3043
e-ISSN
1691-5976
Počet stran výsledku
10
Strana od-do
1032-1041
Název nakladatele
Latvia University of Afgriculture
Místo vydání
Jelgava
Místo konání akce
Jelgava
Datum konání akce
22. 5. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—