Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Vectfem: a generalized MATLAB-based vectorized algorithm for the computation of global matrix/force for finite elements of any type and approximation order in linear elasticity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F24%3A39921519" target="_blank" >RIV/00216275:25510/24:39921519 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/epdf/10.1007/s00033-024-02293-w?sharing_token=QBvBhkaeBFjhMDCuTHIfU_e4RwlQNchNByi7wbcMAY40Vaf9RxlW2s5rbrTkT3zTOw9F0YQjESUtwKwSdPbp7cMlKHo3GupapgAQVxeTpFf4am9mqHS0kaNWakqhD5BUG2cJcIjaXuG9bX0uzAFKE80U7lSMhSh571mP5c4heBo%3D" target="_blank" >https://link.springer.com/epdf/10.1007/s00033-024-02293-w?sharing_token=QBvBhkaeBFjhMDCuTHIfU_e4RwlQNchNByi7wbcMAY40Vaf9RxlW2s5rbrTkT3zTOw9F0YQjESUtwKwSdPbp7cMlKHo3GupapgAQVxeTpFf4am9mqHS0kaNWakqhD5BUG2cJcIjaXuG9bX0uzAFKE80U7lSMhSh571mP5c4heBo%3D</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00033-024-02293-w" target="_blank" >10.1007/s00033-024-02293-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Vectfem: a generalized MATLAB-based vectorized algorithm for the computation of global matrix/force for finite elements of any type and approximation order in linear elasticity

  • Popis výsledku v původním jazyce

    In this paper, we introduce a new vectorized MATLAB-based algorithm for efficient serial computation of global matrix/force arising from finite element method (FEM) for meshes of any type and approximation order in linear elasticity. Because for-loops in MATLAB are very slow, we propose a modified process that takes advantage of vectorization and sparse assembly to achieve good performance while using the same memory as the standard algorithm. For this purpose, by using good programming practices, the implementation of this scheme is succinctly described and can be integrated into any MATLAB package dealing with FEM. Specifically, attention is paid to the calculation of the triplet (row index, column index, matrix components) as well as the assembly of the global stiffness matrix, mass matrix and force vector. Additionally, an extension of the proposed approach for Mindlin plate theory and functionally graded materials is outlined. Finally, the accuracy of this strategy is verified on selected numerical tests after comparing the obtained results with those of ABAQUS. In terms of performance, the study conducted on a set of meshes considering the standard algorithm and two other well-known MATLAB vectorized algorithms revealed that: (i) for a 2D beam problem meshed with P1-triangle elements, a speedup of about 8 and 15 is achieved with sparse and fsparse, respectively. (ii) for a 3D plate problem meshed with P1-tetrahedral elements, a speedup of about 4 and 8 is achieved with sparse and fsparse, respectively. When compared to ABAQUS performance, the proposed scheme results in a computational time that is about five times smaller.

  • Název v anglickém jazyce

    Vectfem: a generalized MATLAB-based vectorized algorithm for the computation of global matrix/force for finite elements of any type and approximation order in linear elasticity

  • Popis výsledku anglicky

    In this paper, we introduce a new vectorized MATLAB-based algorithm for efficient serial computation of global matrix/force arising from finite element method (FEM) for meshes of any type and approximation order in linear elasticity. Because for-loops in MATLAB are very slow, we propose a modified process that takes advantage of vectorization and sparse assembly to achieve good performance while using the same memory as the standard algorithm. For this purpose, by using good programming practices, the implementation of this scheme is succinctly described and can be integrated into any MATLAB package dealing with FEM. Specifically, attention is paid to the calculation of the triplet (row index, column index, matrix components) as well as the assembly of the global stiffness matrix, mass matrix and force vector. Additionally, an extension of the proposed approach for Mindlin plate theory and functionally graded materials is outlined. Finally, the accuracy of this strategy is verified on selected numerical tests after comparing the obtained results with those of ABAQUS. In terms of performance, the study conducted on a set of meshes considering the standard algorithm and two other well-known MATLAB vectorized algorithms revealed that: (i) for a 2D beam problem meshed with P1-triangle elements, a speedup of about 8 and 15 is achieved with sparse and fsparse, respectively. (ii) for a 3D plate problem meshed with P1-tetrahedral elements, a speedup of about 4 and 8 is achieved with sparse and fsparse, respectively. When compared to ABAQUS performance, the proposed scheme results in a computational time that is about five times smaller.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Zeitschrift fur Angewandte Mathematik und Physik

  • ISSN

    0044-2275

  • e-ISSN

    1420-9039

  • Svazek periodika

    75

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    37

  • Strana od-do

    1-37

  • Kód UT WoS článku

    001279330200002

  • EID výsledku v databázi Scopus

    2-s2.0-85199981563