A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F24%3A39921692" target="_blank" >RIV/00216275:25510/24:39921692 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210670724002257" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210670724002257</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scs.2024.105397" target="_blank" >10.1016/j.scs.2024.105397</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations
Popis výsledku v původním jazyce
Electric vehicles are emerging as sustainable transportation solutions worldwide. Inadequate electric vehicle charging stations (EVCS) hinder their broader adoption. Optimal EVCS site selection is vital, requiring multicriteria decision-making (MCDM) analyses and geographic information systems (GIS). The research introduces, for the first time in site selection problems, an innovative methodology that integrates GIS, machine learning, and MCDM, effectively mapping the suitability of EVCS in urban environments. This study aims to fill the gap in evaluating EVCS placement in densely urbanized areas by adopting a retrospective approach to examine both primary and secondary criteria at existing EVCS sites. Focusing on Prague - a city with a dense EVCS network - it assesses their suitability using various MCDM techniques, representing a significant advance in optimizing EVCS distribution. Spatial analysis facilitated criteria reclassification, and the random forest (RF) algorithm identified key criteria, particularly transportation infrastructure and population density. Analytic hierarchy process (AHP), fuzzy AHP, and stepwise weight assessment ratio analysis (SWARA) are employed to derive criteria weights and suitability maps. Comparative results showed a predilection towards fuzzy AHP over other MCDM methods for modeling suitability analysis for placing EVCS, indicating its marginal effectiveness with the largest high-suitability area (172 km 2 ) and hosting the most EVCS (461) in this zone with the highest average score (4.49). This study not only assesses criteria importance and technique efficacy but also signifies a paradigm shift in MCDM from subjective to objective, data -driven decision-making by incorporating machine learning. The introduced approach offers guidance for EVCS planning and expansion by pinpointing areas that optimize service quality.
Název v anglickém jazyce
A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations
Popis výsledku anglicky
Electric vehicles are emerging as sustainable transportation solutions worldwide. Inadequate electric vehicle charging stations (EVCS) hinder their broader adoption. Optimal EVCS site selection is vital, requiring multicriteria decision-making (MCDM) analyses and geographic information systems (GIS). The research introduces, for the first time in site selection problems, an innovative methodology that integrates GIS, machine learning, and MCDM, effectively mapping the suitability of EVCS in urban environments. This study aims to fill the gap in evaluating EVCS placement in densely urbanized areas by adopting a retrospective approach to examine both primary and secondary criteria at existing EVCS sites. Focusing on Prague - a city with a dense EVCS network - it assesses their suitability using various MCDM techniques, representing a significant advance in optimizing EVCS distribution. Spatial analysis facilitated criteria reclassification, and the random forest (RF) algorithm identified key criteria, particularly transportation infrastructure and population density. Analytic hierarchy process (AHP), fuzzy AHP, and stepwise weight assessment ratio analysis (SWARA) are employed to derive criteria weights and suitability maps. Comparative results showed a predilection towards fuzzy AHP over other MCDM methods for modeling suitability analysis for placing EVCS, indicating its marginal effectiveness with the largest high-suitability area (172 km 2 ) and hosting the most EVCS (461) in this zone with the highest average score (4.49). This study not only assesses criteria importance and technique efficacy but also signifies a paradigm shift in MCDM from subjective to objective, data -driven decision-making by incorporating machine learning. The introduced approach offers guidance for EVCS planning and expansion by pinpointing areas that optimize service quality.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20100 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Cities and Society
ISSN
2210-6707
e-ISSN
2210-6715
Svazek periodika
106
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
001227169000002
EID výsledku v databázi Scopus
2-s2.0-85190155664