Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F24%3A39921692" target="_blank" >RIV/00216275:25510/24:39921692 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2210670724002257" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210670724002257</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scs.2024.105397" target="_blank" >10.1016/j.scs.2024.105397</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations

  • Popis výsledku v původním jazyce

    Electric vehicles are emerging as sustainable transportation solutions worldwide. Inadequate electric vehicle charging stations (EVCS) hinder their broader adoption. Optimal EVCS site selection is vital, requiring multicriteria decision-making (MCDM) analyses and geographic information systems (GIS). The research introduces, for the first time in site selection problems, an innovative methodology that integrates GIS, machine learning, and MCDM, effectively mapping the suitability of EVCS in urban environments. This study aims to fill the gap in evaluating EVCS placement in densely urbanized areas by adopting a retrospective approach to examine both primary and secondary criteria at existing EVCS sites. Focusing on Prague - a city with a dense EVCS network - it assesses their suitability using various MCDM techniques, representing a significant advance in optimizing EVCS distribution. Spatial analysis facilitated criteria reclassification, and the random forest (RF) algorithm identified key criteria, particularly transportation infrastructure and population density. Analytic hierarchy process (AHP), fuzzy AHP, and stepwise weight assessment ratio analysis (SWARA) are employed to derive criteria weights and suitability maps. Comparative results showed a predilection towards fuzzy AHP over other MCDM methods for modeling suitability analysis for placing EVCS, indicating its marginal effectiveness with the largest high-suitability area (172 km 2 ) and hosting the most EVCS (461) in this zone with the highest average score (4.49). This study not only assesses criteria importance and technique efficacy but also signifies a paradigm shift in MCDM from subjective to objective, data -driven decision-making by incorporating machine learning. The introduced approach offers guidance for EVCS planning and expansion by pinpointing areas that optimize service quality.

  • Název v anglickém jazyce

    A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations

  • Popis výsledku anglicky

    Electric vehicles are emerging as sustainable transportation solutions worldwide. Inadequate electric vehicle charging stations (EVCS) hinder their broader adoption. Optimal EVCS site selection is vital, requiring multicriteria decision-making (MCDM) analyses and geographic information systems (GIS). The research introduces, for the first time in site selection problems, an innovative methodology that integrates GIS, machine learning, and MCDM, effectively mapping the suitability of EVCS in urban environments. This study aims to fill the gap in evaluating EVCS placement in densely urbanized areas by adopting a retrospective approach to examine both primary and secondary criteria at existing EVCS sites. Focusing on Prague - a city with a dense EVCS network - it assesses their suitability using various MCDM techniques, representing a significant advance in optimizing EVCS distribution. Spatial analysis facilitated criteria reclassification, and the random forest (RF) algorithm identified key criteria, particularly transportation infrastructure and population density. Analytic hierarchy process (AHP), fuzzy AHP, and stepwise weight assessment ratio analysis (SWARA) are employed to derive criteria weights and suitability maps. Comparative results showed a predilection towards fuzzy AHP over other MCDM methods for modeling suitability analysis for placing EVCS, indicating its marginal effectiveness with the largest high-suitability area (172 km 2 ) and hosting the most EVCS (461) in this zone with the highest average score (4.49). This study not only assesses criteria importance and technique efficacy but also signifies a paradigm shift in MCDM from subjective to objective, data -driven decision-making by incorporating machine learning. The introduced approach offers guidance for EVCS planning and expansion by pinpointing areas that optimize service quality.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20100 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sustainable Cities and Society

  • ISSN

    2210-6707

  • e-ISSN

    2210-6715

  • Svazek periodika

    106

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    25

  • Strana od-do

    1-25

  • Kód UT WoS článku

    001227169000002

  • EID výsledku v databázi Scopus

    2-s2.0-85190155664