Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection of grapes in natural environment using support vector machine classifier

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F15%3A39899510" target="_blank" >RIV/00216275:25530/15:39899510 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection of grapes in natural environment using support vector machine classifier

  • Popis výsledku v původním jazyce

    The detection of grapes in real scene images is a serious task solved by researches dealing with precision viticulture. The detection of wine grapes of red varieties is a well mastered problem; however, the detection of white varieties still poses challenges. In this paper, four detectors for white wine grapes detection are introduced and evaluated. The detectors are based on support vector machines and they differ in kernels and features used for image representation. Namely, the pixel intensities and histogram of oriented gradients (HOG) are used for the representation of images. Radial basis functions and linear kernels are applied. The detectors based on the HOG feature have proven to be very efficient. Their average recognition accuracy by cross-validation was 98.23% and 98.96%, respectively. Furthermore, they show very good performance for other cross-validation metrics. Their average precision is 0.978 and 0.985, respectively; their average recall is 0.987 and 0.994, respectively. The detectors were also verified on test sets with positive samples affected by rotation distortion, and moreover on image sections of a real scene photo, in both cases with good results. Moreover, the detectors do not require any artificial lighting and they can work under different light conditions.

  • Název v anglickém jazyce

    Detection of grapes in natural environment using support vector machine classifier

  • Popis výsledku anglicky

    The detection of grapes in real scene images is a serious task solved by researches dealing with precision viticulture. The detection of wine grapes of red varieties is a well mastered problem; however, the detection of white varieties still poses challenges. In this paper, four detectors for white wine grapes detection are introduced and evaluated. The detectors are based on support vector machines and they differ in kernels and features used for image representation. Namely, the pixel intensities and histogram of oriented gradients (HOG) are used for the representation of images. Radial basis functions and linear kernels are applied. The detectors based on the HOG feature have proven to be very efficient. Their average recognition accuracy by cross-validation was 98.23% and 98.96%, respectively. Furthermore, they show very good performance for other cross-validation metrics. Their average precision is 0.978 and 0.985, respectively; their average recall is 0.987 and 0.994, respectively. The detectors were also verified on test sets with positive samples affected by rotation distortion, and moreover on image sections of a real scene photo, in both cases with good results. Moreover, the detectors do not require any artificial lighting and they can work under different light conditions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mendel 2015: 21st International Conference on Soft Computing

  • ISBN

  • ISSN

    1803-3814

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    143-150

  • Název nakladatele

    Vysoké učení technické v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    23. 6. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku