Detection of Grapes in Natural Environment Using Feedforward Neural Network as a Classifier
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F16%3A39902004" target="_blank" >RIV/00216275:25530/16:39902004 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of Grapes in Natural Environment Using Feedforward Neural Network as a Classifier
Popis výsledku v původním jazyce
The recognition of wine grapes in images acquired in natural environment is a serious issue solved by researches dealing with precision viticulture. The detection of wine grapes of red kinds is a well managed problem. On the other hand, the detection of white grapes is still a challenging task. In this contribution, the classifier for white wine grapes recognition is introduced and evaluated. The classifier is based on an artificial neural network and is used in two ways which differ in image representation. Namely, the pixel intensities and histogram of oriented gradients are used for the representation of images. Then, feedforward multilayer neural network is applied as a classifier. The classifiers based on the histograms of oriented gradients seemed to be very effective - they were almost error free from the cross validation point of view and they performed well with the independent testing data sets, too. On the other hand, the representation using pixel intensities was stated as insufficient for classification using our approach.
Název v anglickém jazyce
Detection of Grapes in Natural Environment Using Feedforward Neural Network as a Classifier
Popis výsledku anglicky
The recognition of wine grapes in images acquired in natural environment is a serious issue solved by researches dealing with precision viticulture. The detection of wine grapes of red kinds is a well managed problem. On the other hand, the detection of white grapes is still a challenging task. In this contribution, the classifier for white wine grapes recognition is introduced and evaluated. The classifier is based on an artificial neural network and is used in two ways which differ in image representation. Namely, the pixel intensities and histogram of oriented gradients are used for the representation of images. Then, feedforward multilayer neural network is applied as a classifier. The classifiers based on the histograms of oriented gradients seemed to be very effective - they were almost error free from the cross validation point of view and they performed well with the independent testing data sets, too. On the other hand, the representation using pixel intensities was stated as insufficient for classification using our approach.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2016 SAI Computing Conference
ISBN
978-1-4673-8460-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1330-1334
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
New York
Místo konání akce
Londýn
Datum konání akce
13. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000389451900194