Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of performance of grape berry detectors on real-life images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F16%3A39901517" target="_blank" >RIV/00216275:25530/16:39901517 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of performance of grape berry detectors on real-life images

  • Popis výsledku v původním jazyce

    Grape berry detectors based on SVM and HOG features have proven to be very efficient in detection of white grapes varieties. This statement is based on results, which have been achieved by 10-fold cross-validation, and by evaluation of the detectors on datasets with symmetrical prior probabilities of classes. The detectors have been also tested on real-life images; however, their performance could not be fully assessed in this case. The poor evaluation was caused by sensitivity of some of the used performance measures on composition of datasets. In order to obtain more useful results, all the used biased measures have been modified. The idea behind the modification, as well as the modification itself, is described in this paper. The modified measures have been used by re-evaluation of the detector's performance on a set of real-life images. The set had in fifteen real-life images, which were used within the original tests; however, this set has been extended to about thirty new images. The extended set allows obtaining of more precise information about performance of the detectors on real-life images. The results, which have been achieved by the re-evaluation, confirm expected excellent performance of the detectors on real-life images.

  • Název v anglickém jazyce

    Evaluation of performance of grape berry detectors on real-life images

  • Popis výsledku anglicky

    Grape berry detectors based on SVM and HOG features have proven to be very efficient in detection of white grapes varieties. This statement is based on results, which have been achieved by 10-fold cross-validation, and by evaluation of the detectors on datasets with symmetrical prior probabilities of classes. The detectors have been also tested on real-life images; however, their performance could not be fully assessed in this case. The poor evaluation was caused by sensitivity of some of the used performance measures on composition of datasets. In order to obtain more useful results, all the used biased measures have been modified. The idea behind the modification, as well as the modification itself, is described in this paper. The modified measures have been used by re-evaluation of the detector's performance on a set of real-life images. The set had in fifteen real-life images, which were used within the original tests; however, this set has been extended to about thirty new images. The extended set allows obtaining of more precise information about performance of the detectors on real-life images. The results, which have been achieved by the re-evaluation, confirm expected excellent performance of the detectors on real-life images.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mendel 2016 : 22nd International Conference on Soft Computing

  • ISBN

    978-80-214-5365-4

  • ISSN

    1803-3814

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    217-224

  • Název nakladatele

    Vysoké učení technické v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    8. 6. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku