Evaluation of performance of grape berry detectors on real-life images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F16%3A39901517" target="_blank" >RIV/00216275:25530/16:39901517 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of performance of grape berry detectors on real-life images
Popis výsledku v původním jazyce
Grape berry detectors based on SVM and HOG features have proven to be very efficient in detection of white grapes varieties. This statement is based on results, which have been achieved by 10-fold cross-validation, and by evaluation of the detectors on datasets with symmetrical prior probabilities of classes. The detectors have been also tested on real-life images; however, their performance could not be fully assessed in this case. The poor evaluation was caused by sensitivity of some of the used performance measures on composition of datasets. In order to obtain more useful results, all the used biased measures have been modified. The idea behind the modification, as well as the modification itself, is described in this paper. The modified measures have been used by re-evaluation of the detector's performance on a set of real-life images. The set had in fifteen real-life images, which were used within the original tests; however, this set has been extended to about thirty new images. The extended set allows obtaining of more precise information about performance of the detectors on real-life images. The results, which have been achieved by the re-evaluation, confirm expected excellent performance of the detectors on real-life images.
Název v anglickém jazyce
Evaluation of performance of grape berry detectors on real-life images
Popis výsledku anglicky
Grape berry detectors based on SVM and HOG features have proven to be very efficient in detection of white grapes varieties. This statement is based on results, which have been achieved by 10-fold cross-validation, and by evaluation of the detectors on datasets with symmetrical prior probabilities of classes. The detectors have been also tested on real-life images; however, their performance could not be fully assessed in this case. The poor evaluation was caused by sensitivity of some of the used performance measures on composition of datasets. In order to obtain more useful results, all the used biased measures have been modified. The idea behind the modification, as well as the modification itself, is described in this paper. The modified measures have been used by re-evaluation of the detector's performance on a set of real-life images. The set had in fifteen real-life images, which were used within the original tests; however, this set has been extended to about thirty new images. The extended set allows obtaining of more precise information about performance of the detectors on real-life images. The results, which have been achieved by the re-evaluation, confirm expected excellent performance of the detectors on real-life images.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mendel 2016 : 22nd International Conference on Soft Computing
ISBN
978-80-214-5365-4
ISSN
1803-3814
e-ISSN
—
Počet stran výsledku
8
Strana od-do
217-224
Název nakladatele
Vysoké učení technické v Brně
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
8. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—