Detection of grapes in natural environment using HOG features in low resolution images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39910985" target="_blank" >RIV/00216275:25530/17:39910985 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1742-6596/870/1/012004" target="_blank" >http://dx.doi.org/10.1088/1742-6596/870/1/012004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/870/1/012004" target="_blank" >10.1088/1742-6596/870/1/012004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of grapes in natural environment using HOG features in low resolution images
Popis výsledku v původním jazyce
Detection of grapes in real-life images has importance in various viticulture applications. A grape detector based on an SVM classifier, in combination with a HOG descriptor, has proven to be very efficient in detection of white varieties in high-resolution images. Nevertheless, the high time complexity of such utilization was not suitable for its real-time applications, even when a detector of a simplified structure was used. Thus, we examined possibilities of the simplified version application on images of lower resolutions. For this purpose, we designed a method aimed at search for a detector’s setting which gives the best time complexity vs. performance ratio. In order to provide precise evaluation results, we formed new extended datasets. We discovered that even applied on low-resolution images, the simplified detector, with an appropriate setting of all tuneable parameters, was competitive with other state of the art solutions. We concluded that the detector is qualified for real-time detection of grapes in real-life images.
Název v anglickém jazyce
Detection of grapes in natural environment using HOG features in low resolution images
Popis výsledku anglicky
Detection of grapes in real-life images has importance in various viticulture applications. A grape detector based on an SVM classifier, in combination with a HOG descriptor, has proven to be very efficient in detection of white varieties in high-resolution images. Nevertheless, the high time complexity of such utilization was not suitable for its real-time applications, even when a detector of a simplified structure was used. Thus, we examined possibilities of the simplified version application on images of lower resolutions. For this purpose, we designed a method aimed at search for a detector’s setting which gives the best time complexity vs. performance ratio. In order to provide precise evaluation results, we formed new extended datasets. We discovered that even applied on low-resolution images, the simplified detector, with an appropriate setting of all tuneable parameters, was competitive with other state of the art solutions. We concluded that the detector is qualified for real-time detection of grapes in real-life images.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics: Conference Series
ISBN
—
ISSN
1742-6588
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Institute of Physics Publishing Ltd
Místo vydání
Bristol
Místo konání akce
Praha
Datum konání akce
9. 6. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000412552100004