Influence of (p)RNGs onto GPA-ES behaviors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39911967" target="_blank" >RIV/00216275:25530/17:39911967 - isvavai.cz</a>
Výsledek na webu
<a href="http://nnw.cz/doi/2017/NNW.2017.27.033.pdf" target="_blank" >http://nnw.cz/doi/2017/NNW.2017.27.033.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2017.27.033" target="_blank" >10.14311/NNW.2017.27.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of (p)RNGs onto GPA-ES behaviors
Popis výsledku v původním jazyce
The main aim of this paper is to investigate if the evolutionary algorithms (EAs) can be influenced by Random Number Generators (RNGs) and pseudo Random Number Generators (pRNGs) and if different evolutionary operators applied within EAs requires different features of RNGs and pRNGs. Speaking both about RNGs and pRNGs, the abbreviation (p)RNGs will be used. This question is significant especially if genetic programming is applied to symbolic regression task with the aim to produce human expert comparable results because such task requires massive computations. Experiments were performed on GPA-ES algorithm combining genetic programming algorithm (GPA) for structure development and evolutionary strategy (ES) algorithm for parameter optimization. This algorithm is described bellow and it applies extended scale of different evolutionary operators (additional individuals generating, symmetric crossover, mutations, and one point crossover). These experiments solved problem of symbolic regression of dynamic system. The number of iterations needed for required quality of regression was used as the measure of (p)RNG influence. These experiments point that different (p)RNGs fit to different evolutionary operators, that some combinations (p)RNGs are better than others and that some theoretically excellent (p)RNGs produces poor results. Presented experiments point that the efficiency of evolutionary algorithms might be increased by application of more (p)RNGs in one algorithm optimised for each particular evolutionary operator.
Název v anglickém jazyce
Influence of (p)RNGs onto GPA-ES behaviors
Popis výsledku anglicky
The main aim of this paper is to investigate if the evolutionary algorithms (EAs) can be influenced by Random Number Generators (RNGs) and pseudo Random Number Generators (pRNGs) and if different evolutionary operators applied within EAs requires different features of RNGs and pRNGs. Speaking both about RNGs and pRNGs, the abbreviation (p)RNGs will be used. This question is significant especially if genetic programming is applied to symbolic regression task with the aim to produce human expert comparable results because such task requires massive computations. Experiments were performed on GPA-ES algorithm combining genetic programming algorithm (GPA) for structure development and evolutionary strategy (ES) algorithm for parameter optimization. This algorithm is described bellow and it applies extended scale of different evolutionary operators (additional individuals generating, symmetric crossover, mutations, and one point crossover). These experiments solved problem of symbolic regression of dynamic system. The number of iterations needed for required quality of regression was used as the measure of (p)RNG influence. These experiments point that different (p)RNGs fit to different evolutionary operators, that some combinations (p)RNGs are better than others and that some theoretically excellent (p)RNGs produces poor results. Presented experiments point that the efficiency of evolutionary algorithms might be increased by application of more (p)RNGs in one algorithm optimised for each particular evolutionary operator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
593-606
Kód UT WoS článku
000423300700005
EID výsledku v databázi Scopus
—