Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Influence of (p)RNGs onto GPA-ES behaviors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39911967" target="_blank" >RIV/00216275:25530/17:39911967 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://nnw.cz/doi/2017/NNW.2017.27.033.pdf" target="_blank" >http://nnw.cz/doi/2017/NNW.2017.27.033.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2017.27.033" target="_blank" >10.14311/NNW.2017.27.033</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Influence of (p)RNGs onto GPA-ES behaviors

  • Popis výsledku v původním jazyce

    The main aim of this paper is to investigate if the evolutionary algorithms (EAs) can be influenced by Random Number Generators (RNGs) and pseudo Random Number Generators (pRNGs) and if different evolutionary operators applied within EAs requires different features of RNGs and pRNGs. Speaking both about RNGs and pRNGs, the abbreviation (p)RNGs will be used. This question is significant especially if genetic programming is applied to symbolic regression task with the aim to produce human expert comparable results because such task requires massive computations. Experiments were performed on GPA-ES algorithm combining genetic programming algorithm (GPA) for structure development and evolutionary strategy (ES) algorithm for parameter optimization. This algorithm is described bellow and it applies extended scale of different evolutionary operators (additional individuals generating, symmetric crossover, mutations, and one point crossover). These experiments solved problem of symbolic regression of dynamic system. The number of iterations needed for required quality of regression was used as the measure of (p)RNG influence. These experiments point that different (p)RNGs fit to different evolutionary operators, that some combinations (p)RNGs are better than others and that some theoretically excellent (p)RNGs produces poor results. Presented experiments point that the efficiency of evolutionary algorithms might be increased by application of more (p)RNGs in one algorithm optimised for each particular evolutionary operator.

  • Název v anglickém jazyce

    Influence of (p)RNGs onto GPA-ES behaviors

  • Popis výsledku anglicky

    The main aim of this paper is to investigate if the evolutionary algorithms (EAs) can be influenced by Random Number Generators (RNGs) and pseudo Random Number Generators (pRNGs) and if different evolutionary operators applied within EAs requires different features of RNGs and pRNGs. Speaking both about RNGs and pRNGs, the abbreviation (p)RNGs will be used. This question is significant especially if genetic programming is applied to symbolic regression task with the aim to produce human expert comparable results because such task requires massive computations. Experiments were performed on GPA-ES algorithm combining genetic programming algorithm (GPA) for structure development and evolutionary strategy (ES) algorithm for parameter optimization. This algorithm is described bellow and it applies extended scale of different evolutionary operators (additional individuals generating, symmetric crossover, mutations, and one point crossover). These experiments solved problem of symbolic regression of dynamic system. The number of iterations needed for required quality of regression was used as the measure of (p)RNG influence. These experiments point that different (p)RNGs fit to different evolutionary operators, that some combinations (p)RNGs are better than others and that some theoretically excellent (p)RNGs produces poor results. Presented experiments point that the efficiency of evolutionary algorithms might be increased by application of more (p)RNGs in one algorithm optimised for each particular evolutionary operator.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    16

  • Strana od-do

    593-606

  • Kód UT WoS článku

    000423300700005

  • EID výsledku v databázi Scopus