Lifetime Adaptation in Genetic Programming for the Symbolic Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F19%3A39915385" target="_blank" >RIV/00216275:25530/19:39915385 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-31362-3_33" target="_blank" >http://dx.doi.org/10.1007/978-3-030-31362-3_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-31362-3_33" target="_blank" >10.1007/978-3-030-31362-3_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lifetime Adaptation in Genetic Programming for the Symbolic Regression
Popis výsledku v původním jazyce
This paper focuses on the use of hybrid genetic programming for the supervised machine learning method called symbolic regression. While the basic version of GP symbolic regression optimizes both the model structure and its parameters, the hybrid version can use genetic programming to find the model structure. Consequently, local learning is used to tune model parameters. Such tuning of parameters represents the lifetime adaptation of individuals. Choice of local learning method can accelerate the evolution, but it also has its disadvantages in the form of additional costs. Strong local learning can inhibit the evolutionary search for the optimal genotype due to the hiding effect, in which the fitness of the individual only slightly depends on his inherited genes. This paper aims to compare the Lamarckian and Baldwinian approaches to the lifetime adaptation of individuals and their influence on the rate of evolution in the search for function, which fits the given input-output data.
Název v anglickém jazyce
Lifetime Adaptation in Genetic Programming for the Symbolic Regression
Popis výsledku anglicky
This paper focuses on the use of hybrid genetic programming for the supervised machine learning method called symbolic regression. While the basic version of GP symbolic regression optimizes both the model structure and its parameters, the hybrid version can use genetic programming to find the model structure. Consequently, local learning is used to tune model parameters. Such tuning of parameters represents the lifetime adaptation of individuals. Choice of local learning method can accelerate the evolution, but it also has its disadvantages in the form of additional costs. Strong local learning can inhibit the evolutionary search for the optimal genotype due to the hiding effect, in which the fitness of the individual only slightly depends on his inherited genes. This paper aims to compare the Lamarckian and Baldwinian approaches to the lifetime adaptation of individuals and their influence on the rate of evolution in the search for function, which fits the given input-output data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational statistics and mathematical modeling methods in intelligent systems : proceedings of 3rd computational methods in systems and software 2019, Vol. 2
ISBN
978-3-030-31361-6
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
8
Strana od-do
339-346
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Zlín
Datum konání akce
10. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—