Multipatch-GLCM for Texture Feature Extraction on Classification of the Colon Histopathology Images using Deep Neural Network with GPU Acceleration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F20%3A39917094" target="_blank" >RIV/00216275:25530/20:39917094 - isvavai.cz</a>
Výsledek na webu
<a href="https://thescipub.com/pdf/jcssp.2020.280.294.pdf" target="_blank" >https://thescipub.com/pdf/jcssp.2020.280.294.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3844/jcssp.2020.280.294" target="_blank" >10.3844/jcssp.2020.280.294</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multipatch-GLCM for Texture Feature Extraction on Classification of the Colon Histopathology Images using Deep Neural Network with GPU Acceleration
Popis výsledku v původním jazyce
Cancer is one of the leading causes of death in the world. It is the main reason why research in this field becomes challenging. Not only for the pathologist but also from the view of a computer scientist. Hematoxylin and Eosin (H&E) images are the most common modalities used by the pathologist for cancer detection. The status of cancer with histopathology images can be classified based on the shape, morphology, intensity, and texture of the image. The use of full high-resolution histopathology images will take a longer time for the extraction of all information due to the huge amount of data. This study proposed advance texture extraction by multi-patch images pixel method with sliding windows that minimize loss of information in each pixel patch. We use texture feature Gray Level Co-Occurrence Matrix (GLCM) with a mean-shift filter as the data pre-processing of the images. The mean-shift filter is a low-pass filter technique that considers the surrounding pixels of the images. The proposed GLCM method is then trained using Deep Neural Networks (DNN) and compared to other classification techniques for benchmarking. For training, we use two hardware: NVIDIA GPU GTX-980 and TESLA K40c. According to the study, Deep Neural Network outperforms other classifiers with the highest accuracy and deviation standard 96.72±0.48 for four cross-validations. The additional information is that training using Theano framework is faster than Tensorflow for both in GTX-980 and Tesla K40c.
Název v anglickém jazyce
Multipatch-GLCM for Texture Feature Extraction on Classification of the Colon Histopathology Images using Deep Neural Network with GPU Acceleration
Popis výsledku anglicky
Cancer is one of the leading causes of death in the world. It is the main reason why research in this field becomes challenging. Not only for the pathologist but also from the view of a computer scientist. Hematoxylin and Eosin (H&E) images are the most common modalities used by the pathologist for cancer detection. The status of cancer with histopathology images can be classified based on the shape, morphology, intensity, and texture of the image. The use of full high-resolution histopathology images will take a longer time for the extraction of all information due to the huge amount of data. This study proposed advance texture extraction by multi-patch images pixel method with sliding windows that minimize loss of information in each pixel patch. We use texture feature Gray Level Co-Occurrence Matrix (GLCM) with a mean-shift filter as the data pre-processing of the images. The mean-shift filter is a low-pass filter technique that considers the surrounding pixels of the images. The proposed GLCM method is then trained using Deep Neural Networks (DNN) and compared to other classification techniques for benchmarking. For training, we use two hardware: NVIDIA GPU GTX-980 and TESLA K40c. According to the study, Deep Neural Network outperforms other classifiers with the highest accuracy and deviation standard 96.72±0.48 for four cross-validations. The additional information is that training using Theano framework is faster than Tensorflow for both in GTX-980 and Tesla K40c.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computer Science
ISSN
1549-3636
e-ISSN
—
Svazek periodika
Volume 16
Číslo periodika v rámci svazku
No. 3
Stát vydavatele periodika
AE - Spojené arabské emiráty
Počet stran výsledku
15
Strana od-do
280-294
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85086875982