Multiple Objects Localization Using Image Segmentation with U-Net
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F21%3A39918540" target="_blank" >RIV/00216275:25530/21:39918540 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/PC52310.2021.9447488" target="_blank" >http://dx.doi.org/10.1109/PC52310.2021.9447488</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PC52310.2021.9447488" target="_blank" >10.1109/PC52310.2021.9447488</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiple Objects Localization Using Image Segmentation with U-Net
Popis výsledku v původním jazyce
Precise object localization in an industrial environment is a significant task affecting follow-up processes for a pick and place application. One of the solutions to effectively ensure the success of this task is to use modern methods of machine vision. Machine vision is still a highly evolving topic, in which the use of approaches based on convolutional neural networks is rising. And so in this contribution, an innovative engineering approach based on convolutional neural networks is proposed for an object localization task. The approach is based on an atypical image segmentation, where the individual objects are represented by two colored gradient circles. These circles represent significant parts of the object like its center or ending. Each object type (class) is determined by a specific color. By use of a local maxima finder, all circles in an image are transformed to points. With knowledge of these points the coordinates and rotations are calculated. The proposed approach was tested on a legitimate localization problem with 100% precision, more than 99.52% recall on the positioning task and with an average of 6 minutes angle variance per object.
Název v anglickém jazyce
Multiple Objects Localization Using Image Segmentation with U-Net
Popis výsledku anglicky
Precise object localization in an industrial environment is a significant task affecting follow-up processes for a pick and place application. One of the solutions to effectively ensure the success of this task is to use modern methods of machine vision. Machine vision is still a highly evolving topic, in which the use of approaches based on convolutional neural networks is rising. And so in this contribution, an innovative engineering approach based on convolutional neural networks is proposed for an object localization task. The approach is based on an atypical image segmentation, where the individual objects are represented by two colored gradient circles. These circles represent significant parts of the object like its center or ending. Each object type (class) is determined by a specific color. By use of a local maxima finder, all circles in an image are transformed to points. With knowledge of these points the coordinates and rotations are calculated. The proposed approach was tested on a legitimate localization problem with 100% precision, more than 99.52% recall on the positioning task and with an average of 6 minutes angle variance per object.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2021 23rd International Conference on Process Control, PC 2021
ISBN
978-1-66540-330-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
180-185
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
New York
Místo konání akce
ONLINE
Datum konání akce
1. 6. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000723653400031