Simplified Energy Model and Multi-Objective Energy Consumption Optimization of a Residential House
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F22%3A39919185" target="_blank" >RIV/00216275:25530/22:39919185 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/12/20/10212" target="_blank" >https://www.mdpi.com/2076-3417/12/20/10212</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app122010212" target="_blank" >10.3390/app122010212</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simplified Energy Model and Multi-Objective Energy Consumption Optimization of a Residential House
Popis výsledku v původním jazyce
Featured Application The potential application of the proposed model is a computationally inexpensive semi- or fully automated system for the optimization of operation in residential buildings in terms of energy consumption. Some analyses state that buildings contribute to overall energy consumption by 20-40%, which, in the context of the recent geopolitical energy crisis, makes them a critical issue to study. Finding solutions for better energy management in buildings can have a significant impact on the energy sector, thus reducing EU energy dependencies and contributing to the fulfillment of the REPowerEU goals. This paper focuses on proposing a simplified model of a residential house considering the main appliances, heating and cooling, a photovoltaic system, and electric vehicle recharging. Weather and solar irradiance forecasts are taken into account. The model predicts the energy demands of a house based on online weather forecasts and the desired indoor temperature. The article also focuses on the analysis of how weather forecast uncertainty affects energy demand prediction. This model can be used to better understand and predict the energy demand of either a single house or a set of houses. A multi-objective optimization approach that takes into account the preferences of users/inhabitants is developed to provide a compromise between the price paid for the electricity and temperature comfort. The authors plan to apply the proposed model to a residential house's real-time control system. The model will be tuned, its predictions will be tested, and it will be used for energy demand optimization.
Název v anglickém jazyce
Simplified Energy Model and Multi-Objective Energy Consumption Optimization of a Residential House
Popis výsledku anglicky
Featured Application The potential application of the proposed model is a computationally inexpensive semi- or fully automated system for the optimization of operation in residential buildings in terms of energy consumption. Some analyses state that buildings contribute to overall energy consumption by 20-40%, which, in the context of the recent geopolitical energy crisis, makes them a critical issue to study. Finding solutions for better energy management in buildings can have a significant impact on the energy sector, thus reducing EU energy dependencies and contributing to the fulfillment of the REPowerEU goals. This paper focuses on proposing a simplified model of a residential house considering the main appliances, heating and cooling, a photovoltaic system, and electric vehicle recharging. Weather and solar irradiance forecasts are taken into account. The model predicts the energy demands of a house based on online weather forecasts and the desired indoor temperature. The article also focuses on the analysis of how weather forecast uncertainty affects energy demand prediction. This model can be used to better understand and predict the energy demand of either a single house or a set of houses. A multi-objective optimization approach that takes into account the preferences of users/inhabitants is developed to provide a compromise between the price paid for the electricity and temperature comfort. The authors plan to apply the proposed model to a residential house's real-time control system. The model will be tuned, its predictions will be tested, and it will be used for energy demand optimization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Science - Basel
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
12
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
nestrankovano
Kód UT WoS článku
000872302600001
EID výsledku v databázi Scopus
—