Tensor Based Multivariate Polynomial Modulo Multiplier for Cryptographic Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F22%3A39919609" target="_blank" >RIV/00216275:25530/22:39919609 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9924585" target="_blank" >https://ieeexplore.ieee.org/document/9924585</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TC.2022.3215638" target="_blank" >10.1109/TC.2022.3215638</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tensor Based Multivariate Polynomial Modulo Multiplier for Cryptographic Applications
Popis výsledku v původním jazyce
Modulo polynomial multiplication is an essential mathematical operation in the area of finite field arithmetic. Polynomial functions can be represented as tensors, which can be utilized as basic building blocks for various lattice-based post-quantum cryptography schemes. This paper presents a tensor-based novel modulo multiplication method for multivariate polynomials over GF(2m) and is realized on the hardware platform (FPGA). The proposed method consumes 6.5× less power and achieves more than 6× speedup compared to other contemporary single variable polynomial multiplication implementations. Our method is embarrassingly parallel and easily scalable for multivariate polynomials. Polynomial functions of nine variables, where each variable is of degree 128, are tested with the proposed multiplier, and its corresponding area, power, and power-delay-area product (PDAP) are presented. The computational complexity of single variable and multivariate polynomial multiplications are O(n) and O(np) , respectively, where n is the maximum degree of a polynomial having p variables. Due to its high speed, low latency, and scalability, the proposed modulo multiplier can be used in a wide range of applications.
Název v anglickém jazyce
Tensor Based Multivariate Polynomial Modulo Multiplier for Cryptographic Applications
Popis výsledku anglicky
Modulo polynomial multiplication is an essential mathematical operation in the area of finite field arithmetic. Polynomial functions can be represented as tensors, which can be utilized as basic building blocks for various lattice-based post-quantum cryptography schemes. This paper presents a tensor-based novel modulo multiplication method for multivariate polynomials over GF(2m) and is realized on the hardware platform (FPGA). The proposed method consumes 6.5× less power and achieves more than 6× speedup compared to other contemporary single variable polynomial multiplication implementations. Our method is embarrassingly parallel and easily scalable for multivariate polynomials. Polynomial functions of nine variables, where each variable is of degree 128, are tested with the proposed multiplier, and its corresponding area, power, and power-delay-area product (PDAP) are presented. The computational complexity of single variable and multivariate polynomial multiplications are O(n) and O(np) , respectively, where n is the maximum degree of a polynomial having p variables. Due to its high speed, low latency, and scalability, the proposed modulo multiplier can be used in a wide range of applications.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19100" target="_blank" >LTAIN19100: Vývoj bezkontaktní technologie pro inteligentní ochranu zájmových prostor</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Computers
ISSN
0018-9340
e-ISSN
1557-9956
Svazek periodika
2022
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85140719588