Memory Efficient Deep Learning-Based Grasping Point Detection of Nontrivial Objects for Robotic Bin Picking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F24%3A39922178" target="_blank" >RIV/00216275:25530/24:39922178 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10846-024-02153-9" target="_blank" >https://link.springer.com/article/10.1007/s10846-024-02153-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10846-024-02153-9" target="_blank" >10.1007/s10846-024-02153-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Memory Efficient Deep Learning-Based Grasping Point Detection of Nontrivial Objects for Robotic Bin Picking
Popis výsledku v původním jazyce
Picking up non-trivial objects from a bin with a robotic arm is a common task of modern industrial processes. Here, an efficient data-driven method of grasping point detection, based on an attention squeeze parallel U-shaped neural network (ASP U-Net) for the bin picking task, is proposed. The method directly provides all necessary information about the feasible grasping points of objects, which are randomly or regularly arranged in a bin with side walls. Moreover, the method is able to evaluate and select the optimal grasping point among the feasible ones for two types of end effectors, i.e., a vacuum cup and a parallel gripper. The key element of the utilized ASP U-Net neural network is the transformation of a single RGB-Depth image of the bin containing nontrivial objects into a schematic grey-scale frame, where the positions and poses of the grasping points are coded into gradient geometric shapes. The experiments carried out in this study include a comprehensive set of scenes with randomly scattered, ordered, and semi-ordered objects arranged in impeccable or deformed bins. The results indicate outstanding accuracy with more than acceptable computational requirements. Additionally, the scaling possibilities of the method can offer extremely lightweight implementations, applicable, for example, to battery-powered edge-computing devices with low RAM capacity.
Název v anglickém jazyce
Memory Efficient Deep Learning-Based Grasping Point Detection of Nontrivial Objects for Robotic Bin Picking
Popis výsledku anglicky
Picking up non-trivial objects from a bin with a robotic arm is a common task of modern industrial processes. Here, an efficient data-driven method of grasping point detection, based on an attention squeeze parallel U-shaped neural network (ASP U-Net) for the bin picking task, is proposed. The method directly provides all necessary information about the feasible grasping points of objects, which are randomly or regularly arranged in a bin with side walls. Moreover, the method is able to evaluate and select the optimal grasping point among the feasible ones for two types of end effectors, i.e., a vacuum cup and a parallel gripper. The key element of the utilized ASP U-Net neural network is the transformation of a single RGB-Depth image of the bin containing nontrivial objects into a schematic grey-scale frame, where the positions and poses of the grasping points are coded into gradient geometric shapes. The experiments carried out in this study include a comprehensive set of scenes with randomly scattered, ordered, and semi-ordered objects arranged in impeccable or deformed bins. The results indicate outstanding accuracy with more than acceptable computational requirements. Additionally, the scaling possibilities of the method can offer extremely lightweight implementations, applicable, for example, to battery-powered edge-computing devices with low RAM capacity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent and Robotic Systems: Theory and Applications
ISSN
0921-0296
e-ISSN
1573-0409
Svazek periodika
110
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001318676700001
EID výsledku v databázi Scopus
2-s2.0-85199867198