Distributed Motion Planning for Industrial Random Bin Picking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00345623" target="_blank" >RIV/68407700:21230/18:00345623 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.procir.2018.01.039" target="_blank" >https://doi.org/10.1016/j.procir.2018.01.039</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procir.2018.01.039" target="_blank" >10.1016/j.procir.2018.01.039</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distributed Motion Planning for Industrial Random Bin Picking
Popis výsledku v původním jazyce
The task of bin picking is to automatically unload objects from a container using a robotic manipulator. A widely used solution is to organize the objects into a predictable pattern, e.g., a workpiece carrier, in order to simplify all integral subtasks like object recognition, motion planning and grasping. In such a case, motion planning can even be solved offline as it is ensured that the objects are always at the same positions. However, there is a growing demand for non-structured bin picking, where the objects can be placed randomly in the bins. This arises from recent trends of transforming classical factories into smart production facilities allowing small lot sizes at the efficiency of mass production. Due to unknown positions of the objects in the non-structured bin picking scenario, trajectories for the manipulator cannot be precomputed, but they have to be computed online. Sampling-based motion planning methods like Rapidly Exploring Random Tree (RRT) can be used to plan the trajectories. In this paper, we propose a modification of RRT for distributed motion planning aiming to reduce the runtime. The planning task is first simplified by computing several guiding waypoints. The waypoints are distributed to a set of planners running in parallel and each planner computes a short trajectory between two given waypoints. Connecting the waypoints is easier than solving the original task, therefore each planner runs fast. In comparison to other parallel motion planning techniques, the proposed approach does not require any communication among the computational nodes, which is more suitable for cloud-based computing. The proposed work has been verified both in simulation and on a prototype of a bin picking system. (C) 2018 The Authors. Published by Elsevier B.V.
Název v anglickém jazyce
Distributed Motion Planning for Industrial Random Bin Picking
Popis výsledku anglicky
The task of bin picking is to automatically unload objects from a container using a robotic manipulator. A widely used solution is to organize the objects into a predictable pattern, e.g., a workpiece carrier, in order to simplify all integral subtasks like object recognition, motion planning and grasping. In such a case, motion planning can even be solved offline as it is ensured that the objects are always at the same positions. However, there is a growing demand for non-structured bin picking, where the objects can be placed randomly in the bins. This arises from recent trends of transforming classical factories into smart production facilities allowing small lot sizes at the efficiency of mass production. Due to unknown positions of the objects in the non-structured bin picking scenario, trajectories for the manipulator cannot be precomputed, but they have to be computed online. Sampling-based motion planning methods like Rapidly Exploring Random Tree (RRT) can be used to plan the trajectories. In this paper, we propose a modification of RRT for distributed motion planning aiming to reduce the runtime. The planning task is first simplified by computing several guiding waypoints. The waypoints are distributed to a set of planners running in parallel and each planner computes a short trajectory between two given waypoints. Connecting the waypoints is easier than solving the original task, therefore each planner runs fast. In comparison to other parallel motion planning techniques, the proposed approach does not require any communication among the computational nodes, which is more suitable for cloud-based computing. The proposed work has been verified both in simulation and on a prototype of a bin picking system. (C) 2018 The Authors. Published by Elsevier B.V.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia CIRP
ISBN
—
ISSN
2212-8271
e-ISSN
—
Počet stran výsledku
6
Strana od-do
121-126
Název nakladatele
Elsevier B.V.
Místo vydání
Amsterdam
Místo konání akce
Fürth
Datum konání akce
3. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000547342800023