Performance Prediction of Power Beacon-Aided Wireless Sensor-Powered Non-Orthogonal Multiple-Access Internet-of-Things Networks under Imperfect Channel State Information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F24%3A39922322" target="_blank" >RIV/00216275:25530/24:39922322 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/24:10257240
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/14/11/4498" target="_blank" >https://www.mdpi.com/2076-3417/14/11/4498</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app14114498" target="_blank" >10.3390/app14114498</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Prediction of Power Beacon-Aided Wireless Sensor-Powered Non-Orthogonal Multiple-Access Internet-of-Things Networks under Imperfect Channel State Information
Popis výsledku v původním jazyce
In this paper, we investigate a novel power beacon (PB)-aided wireless sensor-powered non-orthogonal multiple-access (NOMA) Internet-of-Things (IoT) network under imperfect channel state information (CSI). Furthermore, the exact expression outage probability (OP) of two IoT users is derived to analyze the performance of the considered network. To give further insight, the expression asymptotic OP and diversity order are also expressed when the transmit power at the PB goes to infinity. Furthermore, a deep neural network (DNN) framework is proposed to concurrently forecast IoT users' OP in relation to real-time setups for IoT users. Additionally, when compared to the traditional analysis, our created DNN shows the shortest run-time prediction, and the outcomes predicted by the DNN model almost match those of the simulation. In addition, numerical results validate our analysis, simulation, and prediction through a Monte Carlo Simulation. Furthermore, the results show the impact of the main parameter on our proposed system. Finally, these findings show that NOMA performs better than the conventional orthogonal multiple-access (OMA) techniques.
Název v anglickém jazyce
Performance Prediction of Power Beacon-Aided Wireless Sensor-Powered Non-Orthogonal Multiple-Access Internet-of-Things Networks under Imperfect Channel State Information
Popis výsledku anglicky
In this paper, we investigate a novel power beacon (PB)-aided wireless sensor-powered non-orthogonal multiple-access (NOMA) Internet-of-Things (IoT) network under imperfect channel state information (CSI). Furthermore, the exact expression outage probability (OP) of two IoT users is derived to analyze the performance of the considered network. To give further insight, the expression asymptotic OP and diversity order are also expressed when the transmit power at the PB goes to infinity. Furthermore, a deep neural network (DNN) framework is proposed to concurrently forecast IoT users' OP in relation to real-time setups for IoT users. Additionally, when compared to the traditional analysis, our created DNN shows the shortest run-time prediction, and the outcomes predicted by the DNN model almost match those of the simulation. In addition, numerical results validate our analysis, simulation, and prediction through a Monte Carlo Simulation. Furthermore, the results show the impact of the main parameter on our proposed system. Finally, these findings show that NOMA performs better than the conventional orthogonal multiple-access (OMA) techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SCIENCES-BASEL
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
14
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001245482500001
EID výsledku v databázi Scopus
2-s2.0-85195856798