Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Performance Prediction in UAV-Terrestrial Networks With Hardware Noise

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253500" target="_blank" >RIV/61989100:27240/23:10253500 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/23:10253500

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/ielx7/6287639/6514899/10287354.pdf" target="_blank" >https://ieeexplore.ieee.org/ielx7/6287639/6514899/10287354.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3325478" target="_blank" >10.1109/ACCESS.2023.3325478</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Performance Prediction in UAV-Terrestrial Networks With Hardware Noise

  • Popis výsledku v původním jazyce

    To enhance the service quality of the unmanned aerial vehicle (UAV), the UAV-aided Internet of Things (IoT) systems could deploy a Deep Neural Network (DNN) for performance prediction for the users. Non-orthogonal multiple access (NOMA) is applied to such networks in order to improve spectrum efficiency, and results in improved quality of service at the ground users under the mobility of UAV. The outage and ergodic capacity requirements of the IoT users may not be satisfied due to some imperfect system parameters such as hardware noise. A DNN-based algorithm for performance prediction and the design of multiple antennas at the UAV under hardware noise is proposed. In this DNN-based UAV-NOMA, the central controller (server) collects system parameters periodically based on observing the state of IoT system and performs adjustments to the dynamic environment. The closed-form expressions for the outage probability and the ergodic capacity are derived to evaluate the performance of a group of IoT users. Our numerical results demonstrate that: i) In contrast to the traditional UAV-NOMA system, the UAV cannot know the performance at each IoT user in order to adjust the parameters (i.e. power allocation factors) before transmitting the signals to the devices; while the proposed DNN-based IoT system is capable of predicting the performance; ii) The performance of the IoT users can be significantly improved by integrating more antennas at the UAV and limiting levels of hardware noise; iii) By designing NOMA, the UAV-NOMA-based IoT system can increase the throughput to the tune of 40% compared with the benchmark (the orthogonal multiple access (OMA)-based IoT).

  • Název v anglickém jazyce

    Performance Prediction in UAV-Terrestrial Networks With Hardware Noise

  • Popis výsledku anglicky

    To enhance the service quality of the unmanned aerial vehicle (UAV), the UAV-aided Internet of Things (IoT) systems could deploy a Deep Neural Network (DNN) for performance prediction for the users. Non-orthogonal multiple access (NOMA) is applied to such networks in order to improve spectrum efficiency, and results in improved quality of service at the ground users under the mobility of UAV. The outage and ergodic capacity requirements of the IoT users may not be satisfied due to some imperfect system parameters such as hardware noise. A DNN-based algorithm for performance prediction and the design of multiple antennas at the UAV under hardware noise is proposed. In this DNN-based UAV-NOMA, the central controller (server) collects system parameters periodically based on observing the state of IoT system and performs adjustments to the dynamic environment. The closed-form expressions for the outage probability and the ergodic capacity are derived to evaluate the performance of a group of IoT users. Our numerical results demonstrate that: i) In contrast to the traditional UAV-NOMA system, the UAV cannot know the performance at each IoT user in order to adjust the parameters (i.e. power allocation factors) before transmitting the signals to the devices; while the proposed DNN-based IoT system is capable of predicting the performance; ii) The performance of the IoT users can be significantly improved by integrating more antennas at the UAV and limiting levels of hardware noise; iii) By designing NOMA, the UAV-NOMA-based IoT system can increase the throughput to the tune of 40% compared with the benchmark (the orthogonal multiple access (OMA)-based IoT).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    117562-117575

  • Kód UT WoS článku

    001097929600001

  • EID výsledku v databázi Scopus