Performance Prediction in UAV-Terrestrial Networks With Hardware Noise
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253500" target="_blank" >RIV/61989100:27240/23:10253500 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10253500
Výsledek na webu
<a href="https://ieeexplore.ieee.org/ielx7/6287639/6514899/10287354.pdf" target="_blank" >https://ieeexplore.ieee.org/ielx7/6287639/6514899/10287354.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3325478" target="_blank" >10.1109/ACCESS.2023.3325478</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Prediction in UAV-Terrestrial Networks With Hardware Noise
Popis výsledku v původním jazyce
To enhance the service quality of the unmanned aerial vehicle (UAV), the UAV-aided Internet of Things (IoT) systems could deploy a Deep Neural Network (DNN) for performance prediction for the users. Non-orthogonal multiple access (NOMA) is applied to such networks in order to improve spectrum efficiency, and results in improved quality of service at the ground users under the mobility of UAV. The outage and ergodic capacity requirements of the IoT users may not be satisfied due to some imperfect system parameters such as hardware noise. A DNN-based algorithm for performance prediction and the design of multiple antennas at the UAV under hardware noise is proposed. In this DNN-based UAV-NOMA, the central controller (server) collects system parameters periodically based on observing the state of IoT system and performs adjustments to the dynamic environment. The closed-form expressions for the outage probability and the ergodic capacity are derived to evaluate the performance of a group of IoT users. Our numerical results demonstrate that: i) In contrast to the traditional UAV-NOMA system, the UAV cannot know the performance at each IoT user in order to adjust the parameters (i.e. power allocation factors) before transmitting the signals to the devices; while the proposed DNN-based IoT system is capable of predicting the performance; ii) The performance of the IoT users can be significantly improved by integrating more antennas at the UAV and limiting levels of hardware noise; iii) By designing NOMA, the UAV-NOMA-based IoT system can increase the throughput to the tune of 40% compared with the benchmark (the orthogonal multiple access (OMA)-based IoT).
Název v anglickém jazyce
Performance Prediction in UAV-Terrestrial Networks With Hardware Noise
Popis výsledku anglicky
To enhance the service quality of the unmanned aerial vehicle (UAV), the UAV-aided Internet of Things (IoT) systems could deploy a Deep Neural Network (DNN) for performance prediction for the users. Non-orthogonal multiple access (NOMA) is applied to such networks in order to improve spectrum efficiency, and results in improved quality of service at the ground users under the mobility of UAV. The outage and ergodic capacity requirements of the IoT users may not be satisfied due to some imperfect system parameters such as hardware noise. A DNN-based algorithm for performance prediction and the design of multiple antennas at the UAV under hardware noise is proposed. In this DNN-based UAV-NOMA, the central controller (server) collects system parameters periodically based on observing the state of IoT system and performs adjustments to the dynamic environment. The closed-form expressions for the outage probability and the ergodic capacity are derived to evaluate the performance of a group of IoT users. Our numerical results demonstrate that: i) In contrast to the traditional UAV-NOMA system, the UAV cannot know the performance at each IoT user in order to adjust the parameters (i.e. power allocation factors) before transmitting the signals to the devices; while the proposed DNN-based IoT system is capable of predicting the performance; ii) The performance of the IoT users can be significantly improved by integrating more antennas at the UAV and limiting levels of hardware noise; iii) By designing NOMA, the UAV-NOMA-based IoT system can increase the throughput to the tune of 40% compared with the benchmark (the orthogonal multiple access (OMA)-based IoT).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
117562-117575
Kód UT WoS článku
001097929600001
EID výsledku v databázi Scopus
—