Skeleton Detection Using MediaPipe as a Tool for Musculoskeletal Disorders Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F24%3A39922654" target="_blank" >RIV/00216275:25530/24:39922654 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-53549-9_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-53549-9_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-53549-9_4" target="_blank" >10.1007/978-3-031-53549-9_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Skeleton Detection Using MediaPipe as a Tool for Musculoskeletal Disorders Analysis
Popis výsledku v původním jazyce
Skeleton detection, also known as human pose estimation (HPE), is becoming more and more popular as it can be applied in a range of applications such as game entertainment, human-machine interaction, VR-based projects, medical rehabilitation, etc. Thanks to the booming development of deep learning, HPE solutions can be implemented using deep learning methods which require standard 2D RGB images or video sequences as input. That is, technology nowadays is making HPE solutions more and more lightweight and fast which is possible to run on mobile devices for the daily use of skeleton detection. This article covers a brief survey of current deep learning-based human pose estimation approaches in the first place. Then, a lightweight deep learning model – MediaPipe – will be illustrated from all the perspectives of its structure, working flow, strengths & weaknesses and the more concerned compatibility in platforms and programming languages. As a result, a multi-platform application for collecting movement data from patients suffering from musculoskeletal diseases relying on MediaPipe is introduced. Finally, there is a summary of achievements and obstacles of application development, which is significant as it can be a signpost for teams who are doing or about to do an application based on the MediaPipe library.
Název v anglickém jazyce
Skeleton Detection Using MediaPipe as a Tool for Musculoskeletal Disorders Analysis
Popis výsledku anglicky
Skeleton detection, also known as human pose estimation (HPE), is becoming more and more popular as it can be applied in a range of applications such as game entertainment, human-machine interaction, VR-based projects, medical rehabilitation, etc. Thanks to the booming development of deep learning, HPE solutions can be implemented using deep learning methods which require standard 2D RGB images or video sequences as input. That is, technology nowadays is making HPE solutions more and more lightweight and fast which is possible to run on mobile devices for the daily use of skeleton detection. This article covers a brief survey of current deep learning-based human pose estimation approaches in the first place. Then, a lightweight deep learning model – MediaPipe – will be illustrated from all the perspectives of its structure, working flow, strengths & weaknesses and the more concerned compatibility in platforms and programming languages. As a result, a multi-platform application for collecting movement data from patients suffering from musculoskeletal diseases relying on MediaPipe is introduced. Finally, there is a summary of achievements and obstacles of application development, which is significant as it can be a signpost for teams who are doing or about to do an application based on the MediaPipe library.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Software Engineering Methods in Systems and Network Systems (CoMeSySo 2023)
ISBN
978-3-031-53548-2
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
15
Strana od-do
35-50
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Zlín
Datum konání akce
12. 4. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—